IDEAS home Printed from https://ideas.repec.org/p/tcd/tcduee/tep0314.html
   My bibliography  Save this paper

The Drivers of Long-run CO2 Emissions: A Global Perspective since 1800

Author

Listed:
  • Sofia Teives HENRIQUES

    () (Department of Business and Economics, University of Southern Denmark)

  • Karol Jan BOROWIECKI

    () (Department of Business and Economics, University of Southern Denmark
    Department of Economics, Trinity College Dublin)

Abstract

Fossil-fuel-related carbon dioxide emissions have risen dramatically since 1800. We identify the long-run drivers of CO2 emissions for a sample of twelve developed economies using an extended Kaya decomposition. By considering biomass and carbon-free energy sources along with fossil fuels we are able to shed light on the effects of past and present energy transitions on CO2 emissions. We find that at low levels of income per capita, fuel switching from biomass to fossil fuels is the main contributing factor to emission growth. Scale effects, especially income effects, become the most important emission drivers at higher levels of income and also dominate the overall long-run change. Technological change is the main offsetting factor. Particularly in the last decades, technological change and fuel switching have become important contributors to the decrease in emissions in Europe. Our results also individualize the different CO2 historical paths across parts of Europe, North America and Japan.

Suggested Citation

  • Sofia Teives HENRIQUES & Karol Jan BOROWIECKI, 2014. "The Drivers of Long-run CO2 Emissions: A Global Perspective since 1800," Trinity Economics Papers tep0314, Trinity College Dublin, Department of Economics.
  • Handle: RePEc:tcd:tcduee:tep0314
    as

    Download full text from publisher

    File URL: http://www.tcd.ie/Economics/TEP/2014/TEP0314.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
    2. Tol, Richard S.J. & Pacala, Stephen W. & Socolow, Robert H., 2009. "Understanding Long-Term Energy Use and Carbon Dioxide Emissions in the USA," Journal of Policy Modeling, Elsevier, vol. 31(3), pages 425-445, May.
    3. Sofia Teives Henriques & Paul Sharp, 2016. "The Danish agricultural revolution in an energy perspective: a case of development with few domestic energy sources," Economic History Review, Economic History Society, vol. 69(3), pages 844-869, August.
    4. Dobes Leo & Jotzo Frank & Stern David I., 2014. "The Economics of Global Climate Change: A Historical Literature Review," Review of Economics, De Gruyter, vol. 65(3), pages 281-320, December.
    5. Kuskova, Petra & Gingrich, Simone & Krausmann, Fridolin, 2008. "Long term changes in social metabolism and land use in Czechoslovakia, 1830-2000: An energy transition under changing political regimes," Ecological Economics, Elsevier, vol. 68(1-2), pages 394-407, December.
    6. Lindmark, Magnus, 2004. "Patterns of historical CO2 intensity transitions among high and low-income countries," Explorations in Economic History, Elsevier, vol. 41(4), pages 426-447, October.
    7. Warr, Benjamin & Ayres, Robert & Eisenmenger, Nina & Krausmann, Fridolin & Schandl, Heinz, 2010. "Energy use and economic development: A comparative analysis of useful work supply in Austria, Japan, the United Kingdom and the US during 100Â years of economic growth," Ecological Economics, Elsevier, vol. 69(10), pages 1904-1917, August.
    8. M. d. MAR RUBIO & CÉSAR YÁÑEZ & MAURICIO FOLCHI & ALBERT CARRERAS, 2010. "Energy as an indicator of modernization in Latin America, 1890-1925," Economic History Review, Economic History Society, vol. 63(3), pages 769-804, August.
    9. Rubio, M.d.Mar & Folchi, Mauricio, 2012. "Will small energy consumers be faster in transition? Evidence from the early shift from coal to oil in Latin America," Energy Policy, Elsevier, vol. 50(C), pages 50-61.
    10. Grubler, Arnulf, 2012. "Energy transitions research: Insights and cautionary tales," Energy Policy, Elsevier, vol. 50(C), pages 8-16.
    11. Henriques, Sofia Teives & Kander, Astrid, 2010. "The modest environmental relief resulting from the transition to a service economy," Ecological Economics, Elsevier, vol. 70(2), pages 271-282, December.
    12. Ang, B.W. & Liu, F.L., 2001. "A new energy decomposition method: perfect in decomposition and consistent in aggregation," Energy, Elsevier, vol. 26(6), pages 537-548.
    13. Ang, B. W., 2005. "The LMDI approach to decomposition analysis: a practical guide," Energy Policy, Elsevier, vol. 33(7), pages 867-871, May.
    14. Lindmark, Magnus, 2002. "An EKC-pattern in historical perspective: carbon dioxide emissions, technology, fuel prices and growth in Sweden 1870-1997," Ecological Economics, Elsevier, vol. 42(1-2), pages 333-347, August.
    15. Marcotullio, Peter J. & Schulz, Niels B., 2007. "Comparison of Energy Transitions in the United States and Developing and Industrializing Economies," World Development, Elsevier, vol. 35(10), pages 1650-1683, October.
    16. Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.
    17. Krausmann, Fridolin & Schandl, Heinz & Sieferle, Rolf Peter, 2008. "Socio-ecological regime transitions in Austria and the United Kingdom," Ecological Economics, Elsevier, vol. 65(1), pages 187-201, March.
    18. Gales, Ben & Kander, Astrid & Malanima, Paolo & Rubio, Mar, 2007. "North versus South: Energy transition and energy intensity in Europe over 200 years," European Review of Economic History, Cambridge University Press, vol. 11(02), pages 219-253, August.
    19. Steward, F. R., 1978. "Energy consumption in Canada since confederation," Energy Policy, Elsevier, vol. 6(3), pages 239-245, September.
    20. Astrid Kander & Paolo Malanima & Paul Warde, 2013. "Power to the People: Energy in Europe over the Last Five Centuries," Economics Books, Princeton University Press, edition 1, number 10138.
    21. Ma, Chunbo & Stern, David I., 2008. "Biomass and China's carbon emissions: A missing piece of carbon decomposition," Energy Policy, Elsevier, vol. 36(7), pages 2517-2526, July.
    22. Gingrich, Simone & Kusková, Petra & Steinberger, Julia K., 2011. "Long-term changes in CO2 emissions in Austria and Czechoslovakia--Identifying the drivers of environmental pressures," Energy Policy, Elsevier, vol. 39(2), pages 535-543, February.
    23. Astrid Kander, 2008. "Is it simply getting worse? Agriculture and Swedish greenhouse gas emissions over 200 years -super-1," Economic History Review, Economic History Society, vol. 61(4), pages 773-797, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lima, Fátima & Nunes, Manuel Lopes & Cunha, Jorge & Lucena, André F.P., 2016. "A cross-country assessment of energy-related CO2 emissions: An extended Kaya Index Decomposition Approach," Energy, Elsevier, vol. 115(P2), pages 1361-1374.

    More about this item

    Keywords

    CO2 emissions; Kaya decomposition; Energy transition;

    JEL classification:

    • N70 - Economic History - - Economic History: Transport, International and Domestic Trade, Energy, and Other Services - - - General, International, or Comparative
    • O44 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - Environment and Growth
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q5 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tcd:tcduee:tep0314. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Patricia Hughes). General contact details of provider: http://edirc.repec.org/data/detcdie.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.