IDEAS home Printed from
   My bibliography  Save this article

Quantitative analysis of energy-efficiency strategy on CO2 emissions in the residential sector in Japan - Case study of Iwate prefecture


  • Ashina, Shuichi
  • Nakata, Toshihiko


This study examines the economics of energy-efficiency strategies for reducing CO2 emissions in the residential sector in Japan from the perspective of regional characteristics. For this study, the residential sector in Iwate prefecture was selected as representative of rural areas in Japan. In order to promote purchases of energy-efficient consumer appliances, the prefectural government is presumed to reimburse purchasers a part of the cost difference between energy efficient and conventional appliances. This paper begins with a discussion of the prefecture's financial support for purchasers of energy efficient appliances and assumes that the payments come from prefectural government funds. This paper then looks at the effect of a carbon-tax refund on the reduction of CO2 emissions. The results show that, if half of the households use energy-efficient appliances, then CO2 emissions in the residential sector in the year 2020 will decreases from the BAU scenario, 0.726Â Mt-C to 0.674Â Mt-C. However, the Iwate prefectural government expends $105 million annually, which is 1.5% of the total tax revenue in the year 2003. The carbon-tax refund effectively encourages further reductions in CO2 emissions. Under the $20/tC carbon tax, proposed by the Ministry of the Environment, the carbon-tax refund leads to a reduction in residential CO2 emissions from 0.726Â Mt-C to 0.712Â Mt-C.

Suggested Citation

  • Ashina, Shuichi & Nakata, Toshihiko, 2008. "Quantitative analysis of energy-efficiency strategy on CO2 emissions in the residential sector in Japan - Case study of Iwate prefecture," Applied Energy, Elsevier, vol. 85(4), pages 204-217, April.
  • Handle: RePEc:eee:appene:v:85:y:2008:i:4:p:204-217

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Nagata, Y., 2005. "Quantitative analysis of CO2 emissions reductions through introduction of stationary-type PEM-FC systems in Japan," Energy, Elsevier, vol. 30(14), pages 2636-2653.
    2. Barr, Stewart & Gilg, Andrew W & Ford, Nicholas, 2005. "The household energy gap: examining the divide between habitual- and purchase-related conservation behaviours," Energy Policy, Elsevier, vol. 33(11), pages 1425-1444, July.
    3. Smulders, Sjak & de Nooij, Michiel, 2003. "The impact of energy conservation on technology and economic growth," Resource and Energy Economics, Elsevier, vol. 25(1), pages 59-79, February.
    4. Mulder, Peter & de Groot, Henri L. F. & Hofkes, Marjan W., 2003. "Explaining slow diffusion of energy-saving technologies; a vintage model with returns to diversity and learning-by-using," Resource and Energy Economics, Elsevier, vol. 25(1), pages 105-126, February.
    5. Ghosh, S. & De, S., 2006. "Energy analysis of a cogeneration plant using coal gasification and solid oxide fuel cell," Energy, Elsevier, vol. 31(2), pages 345-363.
    6. Dean W. Boyd & Robert L. Phillips & Stephan G. Regulinski, 1982. "A Model of Technology Selection by Cost Minimizing Producers," Management Science, INFORMS, vol. 28(4), pages 418-424, April.
    7. Marbe, Âsa & Harvey, Simon & Berntsson, Thore, 2006. "Technical, environmental and economic analysis of co-firing of gasified biofuel in a natural gas combined cycle (NGCC) combined heat and power (CHP) plant," Energy, Elsevier, vol. 31(10), pages 1614-1631.
    8. Dulleck, Uwe & Kaufmann, Sylvia, 2004. "Do customer information programs reduce household electricity demand?--the Irish program," Energy Policy, Elsevier, vol. 32(8), pages 1025-1032, June.
    9. Hernández-Santoyo, Joel & Sánchez-Cifuentes, Augusto, 2003. "Trigeneration: an alternative for energy savings," Applied Energy, Elsevier, vol. 76(1-3), pages 219-227, September.
    10. Berta, Gian Luigi & Prato, Alessandro Pini & Garbarino, Luca, 2006. "Design criteria for distributed cogeneration plants," Energy, Elsevier, vol. 31(10), pages 1403-1416.
    11. Lester C. Hunt & Yasushi Ninomiya, 2003. "Unravelling Trends and Seasonality: A Structural Time Series Analysis of Transport Oil Demand in the UK and Japan," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 63-96.
    12. Ahadi-Oskui, T. & Alperin, H. & Nowak, I. & Cziesla, F. & Tsatsaronis, G., 2006. "A relaxation-based heuristic for the design of cost-effective energy conversion systems," Energy, Elsevier, vol. 31(10), pages 1346-1357.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. James A. Gana & Thomas Hoppe, 2017. "Assessment of the Governance System Regarding Adoption of Energy Efficient Appliances by Households in Nigeria," Energies, MDPI, Open Access Journal, vol. 10(1), pages 1-21, January.
    2. Min, Jihoon & Azevedo, Inês Lima & Hakkarainen, Pekka, 2015. "Assessing regional differences in lighting heat replacement effects in residential buildings across the United States," Applied Energy, Elsevier, vol. 141(C), pages 12-18.
    3. Fan, Jing-Li & Liao, Hua & Liang, Qiao-Mei & Tatano, Hirokazu & Liu, Chun-Feng & Wei, Yi-Ming, 2013. "Residential carbon emission evolutions in urban–rural divided China: An end-use and behavior analysis," Applied Energy, Elsevier, vol. 101(C), pages 323-332.
    4. Yun, Geun Young & Steemers, Koen, 2011. "Behavioural, physical and socio-economic factors in household cooling energy consumption," Applied Energy, Elsevier, vol. 88(6), pages 2191-2200, June.
    5. Karan, Ebrahim & Mohammadpour, Atefeh & Asadi, Somayeh, 2016. "Integrating building and transportation energy use to design a comprehensive greenhouse gas mitigation strategy," Applied Energy, Elsevier, vol. 165(C), pages 234-243.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:85:y:2008:i:4:p:204-217. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.