IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i16p3101-d257124.html
   My bibliography  Save this article

Control Strategy for MGT Generation System Optimized by Improved WOA to Enhance Demand Response Capability

Author

Listed:
  • Jiecheng Zhu

    () (School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China)

  • Xitian Wang

    () (School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China)

  • Da Xie

    () (School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China)

  • Chenghong Gu

    () (Department of Electronic and Electrical Engineering, University of Bath, Bath BA2 7AY, UK)

Abstract

The grid-connected micro gas turbine (MGT) generation system is playing an important role in power systems because of its demand response capability and application in combined heat and power (CHP) systems. When applied to promote demand response, the generation system is expected to respond to follow instructions quickly, but a rapid response harms the safety and is not conducive to the benefits of customers, which leads to a contradiction. In this paper, a closed-loop power control is introduced for the MGT to improve demand response capability. The rate of fuel valve opening is limited so as to protect the equipment from thermal fatigue threats. An optimization method is developed for identifying the control parameters, balancing the response time and unrealized energy in the regulation process. An improved whale optimization algorithm (IWOA) is proposed to implement the optimization. Results of the algorithm performance verify that WOA is competitive with other heuristic algorithms, and IWOA is more suitable for parameter optimization problems than WOA because of better efficiency and exploitation capability. Results of power response further indicate that the proposed control strategy can achieve expected aims and is suitable for the MGT generation system.

Suggested Citation

  • Jiecheng Zhu & Xitian Wang & Da Xie & Chenghong Gu, 2019. "Control Strategy for MGT Generation System Optimized by Improved WOA to Enhance Demand Response Capability," Energies, MDPI, Open Access Journal, vol. 12(16), pages 1-20, August.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:16:p:3101-:d:257124
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/16/3101/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/16/3101/
    Download Restriction: no

    References listed on IDEAS

    as
    1. Haupt, Axel & Müller, Karsten, 2017. "Integration of a LOHC storage into a heat-controlled CHP system," Energy, Elsevier, vol. 118(C), pages 1123-1130.
    2. Lin, Fu & Yi, Jiang, 2000. "Optimal operation of a CHP plant for space heating as a peak load regulating plant," Energy, Elsevier, vol. 25(3), pages 283-298.
    3. Vögelin, Philipp & Koch, Ben & Georges, Gil & Boulouchos, Konstatinos, 2017. "Heuristic approach for the economic optimisation of combined heat and power (CHP) plants: Operating strategy, heat storage and power," Energy, Elsevier, vol. 121(C), pages 66-77.
    4. Marina Montero Carrero & Irene Rodríguez Sánchez & Ward De Paepe & Alessandro Parente & Francesco Contino, 2019. "Is There a Future for Small-Scale Cogeneration in Europe? Economic and Policy Analysis of the Internal Combustion Engine, Micro Gas Turbine and Micro Humid Air Turbine Cycles," Energies, MDPI, Open Access Journal, vol. 12(3), pages 1-27, January.
    5. Abdelbasset Krama & Laid Zellouma & Boualaga Rabhi & Shady S. Refaat & Mansour Bouzidi, 2018. "Real-Time Implementation of High Performance Control Scheme for Grid-Tied PV System for Power Quality Enhancement Based on MPPC-SVM Optimized by PSO Algorithm," Energies, MDPI, Open Access Journal, vol. 11(12), pages 1-26, December.
    6. Ondeck, Abigail D. & Edgar, Thomas F. & Baldea, Michael, 2018. "Impact of rooftop photovoltaics and centralized energy storage on the design and operation of a residential CHP system," Applied Energy, Elsevier, vol. 222(C), pages 280-299.
    7. Da Xie & Yupu Lu & Junbo Sun & Chenghong Gu & Jilai Yu, 2016. "Optimal Operation of Network-Connected Combined Heat and Powers for Customer Profit Maximization," Energies, MDPI, Open Access Journal, vol. 9(6), pages 1-17, June.
    8. De Paepe, Ward & Montero Carrero, Marina & Bram, Svend & Contino, Francesco & Parente, Alessandro, 2017. "Waste heat recovery optimization in micro gas turbine applications using advanced humidified gas turbine cycle concepts," Applied Energy, Elsevier, vol. 207(C), pages 218-229.
    9. Berta, Gian Luigi & Prato, Alessandro Pini & Garbarino, Luca, 2006. "Design criteria for distributed cogeneration plants," Energy, Elsevier, vol. 31(10), pages 1403-1416.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    micro gas turbine (MGT); demand response; power control; whale optimization algorithm (WOA);

    JEL classification:

    • Q - Agricultural and Natural Resource Economics; Environmental and Ecological Economics
    • Q0 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General
    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy
    • Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
    • Q49 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Other

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:16:p:3101-:d:257124. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (XML Conversion Team). General contact details of provider: https://www.mdpi.com/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.