IDEAS home Printed from https://ideas.repec.org/a/eee/ecosys/v47y2023i2s0939362522001327.html
   My bibliography  Save this article

Energy intensity and directed fiscal policy

Author

Listed:
  • Yetkiner, Hakan
  • Berk, Istemi

Abstract

This paper assesses the effects of fiscal policy on economy-wide energy intensity within an endogenous growth framework. To this end, we first develop a two-sector (investment good and consumption good) augmented AK model by integrating the Uzawa model with Rebelo’s AK model, and assume that a non-renewable resource is one of the factors of production. Using this framework, we solve the model for the short and long run, identifying the sufficient parameter conditions that ensure higher energy intensity in the investment goods sector. We then introduce a balanced budget government, whose objective is to decrease the economy-wide energy intensity by levying tax on the energy-intensive investment goods sector and subsidizing the consumption goods sector. Contrary to our expectations, we find that this fiscal policy design increases economy-wide energy intensity as it leads to a decline in real GDP without changing total energy consumption. On the basis of this model, we propose the concept of a ‘directed fiscal policy’, which connotes a reduction of the economy-wide energy intensity by following a heterogeneous taxation policy across sectors.

Suggested Citation

  • Yetkiner, Hakan & Berk, Istemi, 2023. "Energy intensity and directed fiscal policy," Economic Systems, Elsevier, vol. 47(2).
  • Handle: RePEc:eee:ecosys:v:47:y:2023:i:2:s0939362522001327
    DOI: 10.1016/j.ecosys.2022.101070
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0939362522001327
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecosys.2022.101070?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    2. Christian Haas and Karol Kempa, 2018. "Directed Technical Change and Energy Intensity Dynamics: Structural Change vs. Energy Efficiency," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    3. H. Uzawa, 1971. "On a Two-Sector Model of Economic Growth," Palgrave Macmillan Books, in: F. H. Hahn (ed.), Readings in the Theory of Growth, chapter 3, pages 19-26, Palgrave Macmillan.
    4. Boyoon Chang & Sung Jin Kang & Tae Yong Jung, 2019. "Price and Output Elasticities of Energy Demand for Industrial Sectors in OECD Countries," Sustainability, MDPI, vol. 11(6), pages 1-17, March.
    5. Robert M. Solow, 1956. "A Contribution to the Theory of Economic Growth," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 70(1), pages 65-94.
    6. Löschel, Andreas & Pothen, Frank & Schymura, Michael, 2015. "Peeling the onion: Analyzing aggregate, national and sectoral energy intensity in the European Union," Energy Economics, Elsevier, vol. 52(S1), pages 63-75.
    7. Zeng, Lin & Xu, Ming & Liang, Sai & Zeng, Siyu & Zhang, Tianzhu, 2014. "Revisiting drivers of energy intensity in China during 1997–2007: A structural decomposition analysis," Energy Policy, Elsevier, vol. 67(C), pages 640-647.
    8. Luigi Grossi & Mauro Mussini, 2017. "Inequality in Energy Intensity in the EU-28: Evidence from a New Decomposition Method," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    9. Rebelo, Sergio, 1991. "Long-Run Policy Analysis and Long-Run Growth," Journal of Political Economy, University of Chicago Press, vol. 99(3), pages 500-521, June.
    10. Mulder, Peter & de Groot, Henri L.F., 2012. "Structural change and convergence of energy intensity across OECD countries, 1970–2005," Energy Economics, Elsevier, vol. 34(6), pages 1910-1921.
    11. Sun, J. W., 1998. "Changes in energy consumption and energy intensity: A complete decomposition model," Energy Economics, Elsevier, vol. 20(1), pages 85-100, February.
    12. Gilbert E. Metcalf, 2008. "An Empirical Analysis of Energy Intensity and Its Determinants at the State Level," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 1-26.
    13. Daron Acemoglu, 1998. "Why Do New Technologies Complement Skills? Directed Technical Change and Wage Inequality," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 113(4), pages 1055-1089.
    14. Voigt, Sebastian & De Cian, Enrica & Schymura, Michael & Verdolini, Elena, 2014. "Energy intensity developments in 40 major economies: Structural change or technology improvement?," Energy Economics, Elsevier, vol. 41(C), pages 47-62.
    15. Daron Acemoglu, 2002. "Directed Technical Change," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 69(4), pages 781-809.
    16. Peter Mulder, 2015. "International Specialization, Structural Change and the Evolution of Manufacturing Energy Intensity in OECD Countries," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    17. Liddle, Brantley, 2012. "OECD Energy Intensity: Measures, Trends, and Convergence," MPRA Paper 52085, University Library of Munich, Germany.
    18. Greening, Lorna A. & Davis, William B. & Schipper, Lee, 1998. "Decomposition of aggregate carbon intensity for the manufacturing sector: comparison of declining trends from 10 OECD countries for the period 1971-1991," Energy Economics, Elsevier, vol. 20(1), pages 43-65, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michał Gostkowski & Tomasz Rokicki & Luiza Ochnio & Grzegorz Koszela & Kamil Wojtczuk & Marcin Ratajczak & Hubert Szczepaniuk & Piotr Bórawski & Aneta Bełdycka-Bórawska, 2021. "Clustering Analysis of Energy Consumption in the Countries of the Visegrad Group," Energies, MDPI, vol. 14(18), pages 1-25, September.
    2. Christian Haas and Karol Kempa, 2018. "Directed Technical Change and Energy Intensity Dynamics: Structural Change vs. Energy Efficiency," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    3. Kempa, Karol & Haas, Christian, 2016. "Directed Technical Change and Energy Intensity Dynamics: Structural Change vs. Energy Efficiency," VfS Annual Conference 2016 (Augsburg): Demographic Change 145722, Verein für Socialpolitik / German Economic Association.
    4. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Assessing drivers of economy-wide energy use and emissions: IDA versus SDA," Energy Policy, Elsevier, vol. 107(C), pages 585-599.
    5. Balado-Naves, Roberto & Baños-Pino, José Francisco & Mayor, Matías, 2023. "Spatial spillovers and world energy intensity convergence," Energy Economics, Elsevier, vol. 124(C).
    6. Diana Dimitrova, 2018. "The 2018 Nobel Prize in Economics," Economic Thought journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 6, pages 98-152.
    7. Gancia, Gino & Zilibotti, Fabrizio, 2005. "Horizontal Innovation in the Theory of Growth and Development," Handbook of Economic Growth, in: Philippe Aghion & Steven Durlauf (ed.), Handbook of Economic Growth, edition 1, volume 1, chapter 3, pages 111-170, Elsevier.
    8. Gregory Casey & Ryo Horii, 2019. "A Multi-factor Uzawa Growth Theorem and Endogenous Capital-Augmenting Technological Change," ISER Discussion Paper 1051, Institute of Social and Economic Research, Osaka University.
    9. Lizhan Cao & Zhongying Qi, 2017. "Theoretical Explanations for the Inverted-U Change of Historical Energy Intensity," Sustainability, MDPI, vol. 9(6), pages 1-19, June.
    10. Ajayi, V. & Reiner, D., 2018. "European Industrial Energy Intensity: The Role of Innovation 1995-2009," Cambridge Working Papers in Economics 1835, Faculty of Economics, University of Cambridge.
    11. Naqvi, Asjad & Stockhammer, Engelbert, 2018. "Directed Technological Change in a Post-Keynesian Ecological Macromodel," Ecological Economics, Elsevier, vol. 154(C), pages 168-188.
    12. Zhu, Xuehong & Zeng, Anqi & Zhong, Meirui & Huang, Jianbai, 2021. "Elasticity of substitution and biased technical change in the CES production function for China's metal-intensive industries," Resources Policy, Elsevier, vol. 73(C).
    13. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Multiplicative structural decomposition analysis of energy and emission intensities: Some methodological issues," Energy, Elsevier, vol. 123(C), pages 47-63.
    14. Casey, Gregory, "undated". "Energy Efficiency and Directed Technical Change: Implications for Climate Change Mitigation," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 259959, Agricultural and Applied Economics Association.
    15. Liu, Yang & Zhong, Sheng, 2021. "Cross-Economy Dynamics in Energy Productivity: Evidence from 47 Economies over the Period 2000–2015," ADBI Working Papers 1215, Asian Development Bank Institute.
    16. Gregory Casey, 2018. "Technology-Driven Unemployment," 2018 Meeting Papers 302, Society for Economic Dynamics.
    17. Gutiérrez-Pedrero, María Jesús & Tarancón, Miguel Ángel & del Río, Pablo & Alcántara, Vicent, 2018. "Analysing the drivers of the intensity of electricity consumption of non-residential sectors in Europe," Applied Energy, Elsevier, vol. 211(C), pages 743-754.
    18. Parker, Steven & Liddle, Brantley, 2016. "Energy efficiency in the manufacturing sector of the OECD: Analysis of price elasticities," Energy Economics, Elsevier, vol. 58(C), pages 38-45.
    19. Aramendia, Emmanuel & Brockway, Paul E. & Pizzol, Massimo & Heun, Matthew K., 2021. "Moving from final to useful stage in energy-economy analysis: A critical assessment," Applied Energy, Elsevier, vol. 283(C).
    20. Fabian Stöckl, 2020. "Is Substitutability the New Efficiency? Endogenous Investment in the Elasticity of Substitution between Clean and Dirty Energy," Discussion Papers of DIW Berlin 1886, DIW Berlin, German Institute for Economic Research.

    More about this item

    Keywords

    Directed fiscal policy; Energy intensity; Taxation; Endogenous growth; Non-renewable energy;
    All these keywords.

    JEL classification:

    • E62 - Macroeconomics and Monetary Economics - - Macroeconomic Policy, Macroeconomic Aspects of Public Finance, and General Outlook - - - Fiscal Policy; Modern Monetary Theory
    • H21 - Public Economics - - Taxation, Subsidies, and Revenue - - - Efficiency; Optimal Taxation
    • O13 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Agriculture; Natural Resources; Environment; Other Primary Products
    • O41 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - One, Two, and Multisector Growth Models
    • Q32 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation - - - Exhaustible Resources and Economic Development

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecosys:v:47:y:2023:i:2:s0939362522001327. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://edirc.repec.org/data/osteide.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.