IDEAS home Printed from https://ideas.repec.org/p/fem/femwpa/2016.51.html
   My bibliography  Save this paper

Bridging the Gap: Do Fast Reacting Fossil Technologies Facilitate Renewable Energy Diffusion?

Author

Listed:
  • Elena Verdolini

    (Fondazione Eni Enrico Mattei and Centro Euro-Mediterraneo per i Cambiamenti Climatici)

  • Francesco Vona

    (OFCE Sciences-Po and SKEMA Business School)

  • David Popp

    (Syracuse University and NBER)

Abstract

The diffusion of renewable energy in the power system implies high supply variability. Lacking economically viable storage options, renewable energy integration has so far been possible thanks to the presence of fast-reacting mid-merit fossil-based technologies, which act as back-up capacity. This paper discusses the role of fossil-based power generation technologies in supporting renewable energy investments. We study the deployment of these two technologies conditional on all other drivers in 26 OECD countries between 1990 and 2013. We show that a 1% percent increase in the share of fast-reacting fossil generation capacity is associated with a 0.88% percent increase in renewable in the long run. These results are robust to various modifications in our empirical strategy, and most notably to the use of system-GMM techniques to account for the interdependence of renewable and fast-reacting fossil investment decisions. Our analysis points to the substantial indirect costs of renewable energy integration and highlights the complementarity of investments in different generation technologies for a successful decarbonization process.

Suggested Citation

  • Elena Verdolini & Francesco Vona & David Popp, 2016. "Bridging the Gap: Do Fast Reacting Fossil Technologies Facilitate Renewable Energy Diffusion?," Working Papers 2016.51, Fondazione Eni Enrico Mattei.
  • Handle: RePEc:fem:femwpa:2016.51
    as

    Download full text from publisher

    File URL: https://www.feem.it/m/publications_pages/NDL2016-051.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Paul Conway & Véronique Janod & Giuseppe Nicoletti, 2005. "Product Market Regulation in OECD Countries: 1998 to 2003," OECD Economics Department Working Papers 419, OECD Publishing.
    2. Verdolini, Elena & Galeotti, Marzio, 2011. "At home and abroad: An empirical analysis of innovation and diffusion in energy technologies," Journal of Environmental Economics and Management, Elsevier, vol. 61(2), pages 119-134, March.
    3. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    4. Nesta, Lionel & Vona, Francesco & Nicolli, Francesco, 2014. "Environmental policies, competition and innovation in renewable energy," Journal of Environmental Economics and Management, Elsevier, vol. 67(3), pages 396-411.
    5. Arellano, Manuel & Bover, Olympia, 1995. "Another look at the instrumental variable estimation of error-components models," Journal of Econometrics, Elsevier, vol. 68(1), pages 29-51, July.
    6. Carrara, Samuel & Marangoni, Giacomo, 2017. "Including system integration of variable renewable energies in a constant elasticity of substitution framework: The case of the WITCH model," Energy Economics, Elsevier, vol. 64(C), pages 612-626.
    7. Daron Acemoglu & Suresh Naidu & Pascual Restrepo & James A. Robinson, 2019. "Democracy Does Cause Growth," Journal of Political Economy, University of Chicago Press, vol. 127(1), pages 47-100.
    8. Pfeiffer, Birte & Mulder, Peter, 2013. "Explaining the diffusion of renewable energy technology in developing countries," Energy Economics, Elsevier, vol. 40(C), pages 285-296.
    9. Shrimali, Gireesh & Jenner, Steffen, 2013. "The impact of state policy on deployment and cost of solar photovoltaic technology in the U.S.: A sector-specific empirical analysis," Renewable Energy, Elsevier, vol. 60(C), pages 679-690.
    10. Steinke, Florian & Wolfrum, Philipp & Hoffmann, Clemens, 2013. "Grid vs. storage in a 100% renewable Europe," Renewable Energy, Elsevier, vol. 50(C), pages 826-832.
    11. Nicolli, Francesco & Vona, Francesco, 2016. "Heterogeneous policies, heterogeneous technologies: The case of renewable energy," Energy Economics, Elsevier, vol. 56(C), pages 190-204.
    12. Nick Johnstone & Ivan Haščič & David Popp, 2010. "Renewable Energy Policies and Technological Innovation: Evidence Based on Patent Counts," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 45(1), pages 133-155, January.
    13. Nickell, Stephen J, 1981. "Biases in Dynamic Models with Fixed Effects," Econometrica, Econometric Society, vol. 49(6), pages 1417-1426, November.
    14. Stephen R. Bond, 2002. "Dynamic panel data models: a guide to micro data methods and practice," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 1(2), pages 141-162, August.
    15. Aguirre, Mariana & Ibikunle, Gbenga, 2014. "Determinants of renewable energy growth: A global sample analysis," Energy Policy, Elsevier, vol. 69(C), pages 374-384.
    16. Gautam Gowrisankaran & Stanley S. Reynolds & Mario Samano, 2016. "Intermittency and the Value of Renewable Energy," Journal of Political Economy, University of Chicago Press, vol. 124(4), pages 1187-1234.
    17. Sinn, Hans-Werner, 2017. "Buffering volatility: A study on the limits of Germany's energy revolution," European Economic Review, Elsevier, vol. 99(C), pages 130-150.
    18. Erin Baker & Meredith Fowlie & Derek Lemoine & Stanley S. Reynolds, 2013. "The Economics of Solar Electricity," Annual Review of Resource Economics, Annual Reviews, vol. 5(1), pages 387-426, June.
    19. Popp, David & Hascic, Ivan & Medhi, Neelakshi, 2011. "Technology and the diffusion of renewable energy," Energy Economics, Elsevier, vol. 33(4), pages 648-662, July.
    20. Anderson, Dennis & Leach, Matthew, 2004. "Harvesting and redistributing renewable energy: on the role of gas and electricity grids to overcome intermittency through the generation and storage of hydrogen," Energy Policy, Elsevier, vol. 32(14), pages 1603-1614, September.
    21. Carrara, Samuel & Marangoni, Giacomo, 2015. "Including System Integration of Variable Renewable Energies in a Constant Elasticity of Substitution Framework: the Case of the WITCH Model," Climate Change and Sustainable Development 230921, Fondazione Eni Enrico Mattei (FEEM).
    22. Sensfuß, Frank & Ragwitz, Mario & Genoese, Massimo, 2008. "The merit-order effect: A detailed analysis of the price effect of renewable electricity generation on spot market prices in Germany," Energy Policy, Elsevier, vol. 36(8), pages 3076-3084, August.
    23. Manuel Arellano & Stephen Bond, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," Review of Economic Studies, Oxford University Press, vol. 58(2), pages 277-297.
    24. Stephen Bond, 2002. "Dynamic panel data models: a guide to microdata methods and practice," CeMMAP working papers CWP09/02, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nesta, Lionel & Verdolini, Elena & Vona, Francesco, 2018. "Threshold Policy Effects and Directed Technical Change in Energy Innovation," CSI: Climate and Sustainable Innovation 268731, Fondazione Eni Enrico Mattei (FEEM).
    2. Yongchao Zeng & Peiwu Dong & Yingying Shi & Yang Li, 2018. "On the Disruptive Innovation Strategy of Renewable Energy Technology Diffusion: An Agent-Based Model," Energies, MDPI, Open Access Journal, vol. 11(11), pages 1-21, November.
    3. Nicoletta Batini & Ian Parry & Philippe Wingender, 2021. "Climate Mitigation Policy in Denmark: A Prototype for Other Countries," CESifo Working Paper Series 8895, CESifo.
    4. Bento, Antonio M. & Garg, Teevrat & Kaffine, Daniel, 2018. "Emissions reductions or green booms? General equilibrium effects of a renewable portfolio standard," Journal of Environmental Economics and Management, Elsevier, vol. 90(C), pages 78-100.
    5. Abdulla, A. & Vaishnav, P. & Sergi, B. & Victor, D.G., 2019. "Limits to deployment of nuclear power for decarbonization: Insights from public opinion," Energy Policy, Elsevier, vol. 129(C), pages 1339-1346.
    6. Kamel Almutairi & Greg Thoma & Alvaro Durand-Morat, 2018. "Ex-Ante Analysis of Economic, Social and Environmental Impacts of Large-Scale Renewable and Nuclear Energy Targets for Global Electricity Generation by 2030," Sustainability, MDPI, Open Access Journal, vol. 10(8), pages 1-25, August.
    7. Conti, C. & Mancusi, M.L. & Sanna-Randaccio, F. & Sestini, R. & Verdolini, E., 2018. "Transition towards a green economy in Europe: Innovation and knowledge integration in the renewable energy sector," Research Policy, Elsevier, vol. 47(10), pages 1996-2009.
    8. Fard, Amirhossein & Javadi, Siamak & Kim, Incheol, 2020. "Environmental regulation and the cost of bank loans: International evidence," Journal of Financial Stability, Elsevier, vol. 51(C).
    9. Lucas Eder & Marko Ban & Gerhard Pirker & Milan Vujanovic & Peter Priesching & Andreas Wimmer, 2018. "Development and Validation of 3D-CFD Injection and Combustion Models for Dual Fuel Combustion in Diesel Ignited Large Gas Engines," Energies, MDPI, Open Access Journal, vol. 11(3), pages 1-23, March.
    10. Tadeusz Skoczkowski & Sławomir Bielecki & Joanna Wojtyńska, 2019. "Long-Term Projection of Renewable Energy Technology Diffusion," Energies, MDPI, Open Access Journal, vol. 12(22), pages 1-24, November.
    11. Yanbing Mao & Kui Liu & Jizhi Zhou, 2019. "Evolution of Green Industrial Growth between Europe and China based on the Energy Consumption Model," Sustainability, MDPI, Open Access Journal, vol. 11(24), pages 1-15, December.
    12. Li Li & Junqi Liu & Lei Zhu, 2020. "Dynamics of energy technology diffusion under uncertainty," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 36(5), pages 795-808, September.
    13. Li, Jianglong & Huang, Jiashun, 2020. "The expansion of China's solar energy: Challenges and policy options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    14. Kim, Haein & Du, Xiaodong & Johnston, Craig, 2018. "Transition of Electricity System towards Decarbonization: The Role of Biomass," 2018 Annual Meeting, August 5-7, Washington, D.C. 274451, Agricultural and Applied Economics Association.
    15. Elena Verdolini & Valentina Bosetti, 2017. "Environmental Policy and the International Diffusion of Cleaner Energy Technologies," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 66(3), pages 497-536, March.
    16. Nicolas Arregui & Ian Parry, 2021. "Reconsidering Climate Mitigation Policy in the UK," CESifo Working Paper Series 8920, CESifo.
    17. Mare Sarr & Joëlle Noailly, 2017. "Innovation, Diffusion, Growth and the Environment: Taking Stock and Charting New Directions," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 66(3), pages 393-407, March.
    18. Lionel Nesta & Elena Verdolini & Francesco Vona, 2018. "Threshold Policy Effects and Directed Technical Change in Energy Innovation," GREDEG Working Papers 2018-01, Groupe de REcherche en Droit, Economie, Gestion (GREDEG CNRS), University of Nice Sophia Antipolis.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicolli, Francesco & Vona, Francesco, 2019. "Energy market liberalization and renewable energy policies in OECD countries," Energy Policy, Elsevier, vol. 128(C), pages 853-867.
    2. Demir, Caner & Cergibozan, Raif, 2020. "Does alternative energy usage converge across Oecd countries?," Renewable Energy, Elsevier, vol. 146(C), pages 559-567.
    3. Hille, Erik & Althammer, Wilhelm & Diederich, Henning, 2020. "Environmental regulation and innovation in renewable energy technologies: Does the policy instrument matter?," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    4. Nicolli, Francesco & Vona, Francesco, 2012. "The Evolution of Renewable Energy Policy in OECD Countries: Aggregate Indicators and Determinants," Climate Change and Sustainable Development 130897, Fondazione Eni Enrico Mattei (FEEM).
    5. Juergen Bitzer & Erkan Goeren, 2018. "Foreign Aid and Subnational Development: A Grid Cell Analysis," Working Papers V-407-18, University of Oldenburg, Department of Economics, revised Mar 2018.
    6. Schneider, Sophie Therese, 2018. "North-South trade agreements and the quality of institutions: Panel data evidence," Hohenheim Discussion Papers in Business, Economics and Social Sciences 27-2018, University of Hohenheim, Faculty of Business, Economics and Social Sciences.
    7. Scott, K. Rebecca, 2015. "Demand and price uncertainty: Rational habits in international gasoline demand," Energy, Elsevier, vol. 79(C), pages 40-49.
    8. Changjun Zheng & Mohammed Mizanur Rahman & Munni Begum & Badar Nadeem Ashraf, 2017. "Capital Regulation, the Cost of Financial Intermediation and Bank Profitability: Evidence from Bangladesh," Journal of Risk and Financial Management, MDPI, Open Access Journal, vol. 10(2), pages 1-24, April.
    9. Conti, C. & Mancusi, M.L. & Sanna-Randaccio, F. & Sestini, R. & Verdolini, E., 2018. "Transition towards a green economy in Europe: Innovation and knowledge integration in the renewable energy sector," Research Policy, Elsevier, vol. 47(10), pages 1996-2009.
    10. Bebonchu Atems & Grayden Shand, 2018. "An empirical analysis of the relationship between entrepreneurship and income inequality," Small Business Economics, Springer, vol. 51(4), pages 905-922, December.
    11. Laptieva, Nataliia, 2016. "Information sharing and the volume of private credit in transition: Evidence from Ukrainian bank-level panel dataAuthor-Name: Grajzl, Peter," Journal of Comparative Economics, Elsevier, vol. 44(2), pages 434-449.
    12. Théo Nicolas, 2019. "How Do Short-term Financial Constraints Affect SMEs’ Long-Term Investment: Evidence from the Working Capital Channel," Working papers 731, Banque de France.
    13. Nesta, Lionel & Vona, Francesco & Nicolli, Francesco, 2014. "Environmental policies, competition and innovation in renewable energy," Journal of Environmental Economics and Management, Elsevier, vol. 67(3), pages 396-411.
    14. Tang, Chor Foon & Abosedra, Salah & Naghavi, Navaz, 2021. "Does the quality of institutions and education strengthen the quality of the environment? Evidence from a global perspective," Energy, Elsevier, vol. 218(C).
    15. Silvia Fedeli & Vitantonio Mariella & Marco Onofri, 2018. "Determinants of Joblessness During the Economic Crisis: Impact of Criminality in the Italian Labour Market," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 139(2), pages 559-588, September.
    16. Fabio Pieri & Riccardo Verruso, 2019. "The determinants of corporate profitability in the Italian domestic appliances industry," Economia e Politica Industriale: Journal of Industrial and Business Economics, Springer;Associazione Amici di Economia e Politica Industriale, vol. 46(1), pages 83-115, March.
    17. Kristoffer Palage & Robert Lundmark & Patrik Söderholm, 2019. "The innovation effects of renewable energy policies and their interaction: the case of solar photovoltaics," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 21(2), pages 217-254, April.
    18. Gulati, Rachita & Goswami, Anju & Kumar, Sunil, 2019. "What drives credit risk in the Indian banking industry? An empirical investigation," Economic Systems, Elsevier, vol. 43(1), pages 42-62.
    19. Armey, Laura E. & McNab, Robert M., 2018. "Expenditure decentralization and natural resources," The Quarterly Review of Economics and Finance, Elsevier, vol. 70(C), pages 52-61.
    20. Vijayakumaran, Ratnam, 2021. "Impact of managerial ownership on investment and liquidity constraints: Evidence from Chinese listed companies," Research in International Business and Finance, Elsevier, vol. 55(C).

    More about this item

    Keywords

    Renewable Energy Investments; Fossil Energy Investments; Complementarity; Energy and Environmental Policy;
    All these keywords.

    JEL classification:

    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
    • Q55 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Technological Innovation
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fem:femwpa:2016.51. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (barbara racah) The email address of this maintainer does not seem to be valid anymore. Please ask barbara racah to update the entry or send us the correct email address. General contact details of provider: https://edirc.repec.org/data/feemmit.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.