IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i6p3556-d773573.html
   My bibliography  Save this article

Consequences of Sustainable Agricultural Productivity, Renewable Energy, and Environmental Decay: Recent Evidence from ASEAN Countries

Author

Listed:
  • Jianwen Zhang

    (Department of Marketing, School of Economics and Management, Wuhan University, Wuhan 430072, China)

  • Jacob Cherian

    (College of Business, Abu Dhabi University, Abu Dhabi P.O. Box 59911, United Arab Emirates)

  • Ashak Mahmud Parvez

    (LRGP, ENSIC, French National Center for Scientific Research (CNRS), 1 rue Grandville, F-54001 Nancy, France
    Helmholtz-Institut Freiberg für Ressourcentechnologie (HIF), Helmholtz-Zentrum Dresden-Rossendorf e.V. (HZDR), Chemnitzer Str. 40, 09599 Freiberg, Germany)

  • Sarminah Samad

    (Department of Business Administration, College of Business and Administration, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia)

  • Muhammad Safdar Sial

    (Department of Management Sciences, COMSATS University Islamabad (CUI), Islamabad 44000, Pakistan)

  • Mohammad Athar Ali

    (Department of Finance, College of Administrative and Financial Sciences, Saudi Electronic University, Riyadh 11673, Saudi Arabia)

  • Mohammed Arshad Khan

    (Department of Accountancy, College of Administrative and Financial Sciences, Saudi Electronic University, Riyadh 11673, Saudi Arabia)

Abstract

Agriculture is critical for meeting the needs of the world’s population, in terms of food production. As a result, it has become a significant contributor to economic growth. According to various studies, agricultural production is one of the most widely recognized sources of greenhouse gas (GHG) emissions globally. This study explores the causal link between aggregate energy consumption resources, trade liberalization, CO 2 emissions, and modern agriculture in selected ASEAN nations from 2000 to 2020, through the use of panel FMOLS data from the United Nations Development Program (fully modified ordinary least square). According to scientific research, the value addition of agricultural commodities helps to reduce CO 2 emissions in polluted countries such as the United States. In addition, it was revealed that the quantity of CO 2 released per unit of energy spent was positively associated with the amount of energy consumed. The reduction of CO 2 emissions is possible in nations where environmental pollution is reducing due to trade liberalization. Although fossil fuels have increased CO 2 emissions, research has shown that adopting renewable energy can help mitigate environmental damage. Revenues and productivity in agriculture are increased due to climate-smart agricultural-favored institutions, while greenhouse gas emissions are reduced. As an example of renewable energy, new energy resources may contribute to the preservation of a clean and healthy environment. The use of renewable energy in agriculture reduces the dependency on fossil fuels, which is beneficial for farmers. Trade policy, on the other hand, may stimulate the movement of money and technology, in order to specialize in economies of scale and manufacturing. It is imperative that ASEAN countries examine policies that will improve living standards, while also protecting the environment. This includes measures that will stimulate agricultural sector production and create active marketplaces for international trade

Suggested Citation

  • Jianwen Zhang & Jacob Cherian & Ashak Mahmud Parvez & Sarminah Samad & Muhammad Safdar Sial & Mohammad Athar Ali & Mohammed Arshad Khan, 2022. "Consequences of Sustainable Agricultural Productivity, Renewable Energy, and Environmental Decay: Recent Evidence from ASEAN Countries," Sustainability, MDPI, vol. 14(6), pages 1-13, March.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:6:p:3556-:d:773573
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/6/3556/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/6/3556/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pao, Hsiao-Tien & Yu, Hsiao-Cheng & Yang, Yeou-Herng, 2011. "Modeling the CO2 emissions, energy use, and economic growth in Russia," Energy, Elsevier, vol. 36(8), pages 5094-5100.
    2. Shahbaz, Muhammad & Hoang, Thi Hong Van & Mahalik, Mantu Kumar & Roubaud, David, 2017. "Energy consumption, financial development and economic growth in India: New evidence from a nonlinear and asymmetric analysis," Energy Economics, Elsevier, vol. 63(C), pages 199-212.
    3. Al-mulali, Usama & Binti Che Sab, Che Normee, 2012. "The impact of energy consumption and CO2 emission on the economic growth and financial development in the Sub Saharan African countries," Energy, Elsevier, vol. 39(1), pages 180-186.
    4. Muhammad Shahbaz & Mantu Kumar Mahalik & Syed Jawad Hussain Shahzad & Shawkat Hammoudeh, 2019. "Does the environmental Kuznets curve exist between globalization and energy consumption? Global evidence from the cross‐correlation method," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 24(1), pages 540-557, January.
    5. Charfeddine, Lanouar & Kahia, Montassar, 2019. "Impact of renewable energy consumption and financial development on CO2 emissions and economic growth in the MENA region: A panel vector autoregressive (PVAR) analysis," Renewable Energy, Elsevier, vol. 139(C), pages 198-213.
    6. Sbia, Rashid & Shahbaz, Muhammad & Hamdi, Helmi, 2014. "A contribution of foreign direct investment, clean energy, trade openness, carbon emissions and economic growth to energy demand in UAE," Economic Modelling, Elsevier, vol. 36(C), pages 191-197.
    7. Peter Pedroni, 1999. "Critical Values for Cointegration Tests in Heterogeneous Panels with Multiple Regressors," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 61(S1), pages 653-670, November.
    8. Pfeiffer, Birte & Mulder, Peter, 2013. "Explaining the diffusion of renewable energy technology in developing countries," Energy Economics, Elsevier, vol. 40(C), pages 285-296.
    9. Lean, Hooi Hooi & Smyth, Russell, 2010. "CO2 emissions, electricity consumption and output in ASEAN," Applied Energy, Elsevier, vol. 87(6), pages 1858-1864, June.
    10. Zhang, Sufang & Andrews-Speed, Philip & Zhao, Xiaoli & He, Yongxiu, 2013. "Interactions between renewable energy policy and renewable energy industrial policy: A critical analysis of China's policy approach to renewable energies," Energy Policy, Elsevier, vol. 62(C), pages 342-353.
    11. Farhani, Sahbi & Shahbaz, Muhammad, 2014. "What role of renewable and non-renewable electricity consumption and output is needed to initially mitigate CO2 emissions in MENA region?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 80-90.
    12. Al-Mulali, Usama & Saboori, Behnaz & Ozturk, Ilhan, 2015. "Investigating the environmental Kuznets curve hypothesis in Vietnam," Energy Policy, Elsevier, vol. 76(C), pages 123-131.
    13. Parvez, Ashak Mahmud & Hafner, Selina & Hornberger, Matthias & Schmid, Max & Scheffknecht, Günter, 2021. "Sorption enhanced gasification (SEG) of biomass for tailored syngas production with in-situ CO2 capture: Current status, process scale-up experiences and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    14. Kyung‐So Im & Junsoo Lee & Margie Tieslau, 2005. "Panel LM Unit‐root Tests with Level Shifts," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(3), pages 393-419, June.
    15. Pedroni, Peter, 1999. "Critical Values for Cointegration Tests in Heterogeneous Panels with Multiple Regressors," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 61(0), pages 653-670, Special I.
    16. Devi Bühler & Thorsten Schuetze & Ranka Junge, 2015. "Towards Development of a Label for Zero Emission Buildings: A Tool to Evaluate Potential Zero Emission Buildings," Sustainability, MDPI, vol. 7(5), pages 1-23, April.
    17. Fudholi, Ahmad & Zohri, Muhammad & Rukman, Nurul Shahirah Binti & Nazri, Nurul Syakirah & Mustapha, Muslizainun & Yen, Chan Hoy & Mohammad, Masita & Sopian, Kamaruzzaman, 2019. "Exergy and sustainability index of photovoltaic thermal (PVT) air collector: A theoretical and experimental study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 44-51.
    18. B. Bakhtyar & Tarek Kacemi & Md Atif Nawaz, 2017. "A Review on Carbon Emissions in Malaysian Cement Industry," International Journal of Energy Economics and Policy, Econjournals, vol. 7(3), pages 282-286.
    19. Farhani, Sahbi & Shahbaz, Muhammad & Sbia, Rashid & Chaibi, Anissa, 2014. "What does MENA region initially need: Grow output or mitigate CO2 emissions?," Economic Modelling, Elsevier, vol. 38(C), pages 270-281.
    20. Ling, Chong Hui & Ahmed, Khalid & Muhamad, Rusnah binti & Shahbaz, Muhammad, 2015. "Decomposing the trade-environment nexus for Malaysia: What do the technique, scale, composition and comparative advantage effect indicate?," MPRA Paper 67165, University Library of Munich, Germany, revised 09 Oct 2015.
    21. Michieka, Nyakundi M. & Fletcher, Jerald & Burnett, Wesley, 2013. "An empirical analysis of the role of China’s exports on CO2 emissions," Applied Energy, Elsevier, vol. 104(C), pages 258-267.
    22. Itbar Khan & Lei Han & Hayat Khan & Le Thi Kim Oanh, 2021. "Analyzing Renewable and Nonrenewable Energy Sources for Environmental Quality: Dynamic Investigation in Developing Countries," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-12, September.
    23. Sarkodie, Samuel Asumadu & Adom, Philip Kofi, 2018. "Determinants of energy consumption in Kenya: A NIPALS approach," Energy, Elsevier, vol. 159(C), pages 696-705.
    24. Ahsan Anwar & Avik Sinha & Arshian Sharif & Muhammad Siddique & Shoaib Irshad & Waseem Anwar & Summaira Malik, 2022. "The nexus between urbanization, renewable energy consumption, financial development, and CO2 emissions: evidence from selected Asian countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(5), pages 6556-6576, May.
    25. Sovacool, Benjamin K., 2009. "Contextualizing avian mortality: A preliminary appraisal of bird and bat fatalities from wind, fossil-fuel, and nuclear electricity," Energy Policy, Elsevier, vol. 37(6), pages 2241-2248, June.
    26. Fontini, Fulvio & Pavan, Giulia, 2014. "The European Union Emission Trading System and technological change: The case of the Italian pulp and paper industry," Energy Policy, Elsevier, vol. 68(C), pages 603-607.
    27. Cole, Matthew A., 2004. "Trade, the pollution haven hypothesis and the environmental Kuznets curve: examining the linkages," Ecological Economics, Elsevier, vol. 48(1), pages 71-81, January.
    28. Parvez, Ashak Mahmud & Lewis, Jonathan David & Afzal, Muhammad T., 2021. "Potential of industrial hemp (Cannabis sativa L.) for bioenergy production in Canada: Status, challenges and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    29. Soytas, Ugur & Sari, Ramazan & Ewing, Bradley T., 2007. "Energy consumption, income, and carbon emissions in the United States," Ecological Economics, Elsevier, vol. 62(3-4), pages 482-489, May.
    30. Yi Yu & Wanwan Zhu & Yuan Tian & Daqing Gong, 2021. "Green Supply Chain Management, Environmental Degradation, and Energy: Evidence from Asian Countries," Discrete Dynamics in Nature and Society, Hindawi, vol. 2021, pages 1-14, August.
    31. Levin, Andrew & Lin, Chien-Fu & James Chu, Chia-Shang, 2002. "Unit root tests in panel data: asymptotic and finite-sample properties," Journal of Econometrics, Elsevier, vol. 108(1), pages 1-24, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andra Lovasz & Nicu Cornel Sabau & Ioana Borza & Radu Brejea, 2023. "Production and Quality of Biodiesel under the Influence of a Rapeseed Fertilization System," Energies, MDPI, vol. 16(9), pages 1-27, April.
    2. Chi Zhang & Binyue Xu & Jasronita Jasni & Mohd Amran Mohd Radzi & Norhafiz Azis & Qi Zhang, 2023. "Three Voltage Vector Duty Cycle Optimization Strategy of the Permanent Magnet Synchronous Motor Driving System for New Energy Electric Vehicles Based on Finite Set Model Predictive Control," Energies, MDPI, vol. 16(6), pages 1-18, March.
    3. Mohammed Arshad Khan & Hamad A. Alhumoudi, 2022. "Performance of E-Banking and the Mediating Effect of Customer Satisfaction: A Structural Equation Model Approach," Sustainability, MDPI, vol. 14(12), pages 1-12, June.
    4. Panxian Wang & Zimeng Ren & Guanghua Qiao, 2023. "How Does Agricultural Trade Liberalization Have Environmental Impacts? Evidence from a Literature Review," Sustainability, MDPI, vol. 15(12), pages 1-18, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kais Saidi & Mohammad Mafizur Rahman, 2021. "The link between environmental quality, economic growth, and energy use: new evidence from five OPEC countries," Environment Systems and Decisions, Springer, vol. 41(1), pages 3-20, March.
    2. Dogan, Eyup & Seker, Fahri, 2016. "Determinants of CO2 emissions in the European Union: The role of renewable and non-renewable energy," Renewable Energy, Elsevier, vol. 94(C), pages 429-439.
    3. Samuel A Sarkodie & Evans B Ntiamoah & Dongmei Li, 2019. "Panel heterogeneous distribution analysis of trade and modernized agriculture on CO2 emissions: The role of renewable and fossil fuel energy consumption," Natural Resources Forum, Blackwell Publishing, vol. 43(3), pages 135-153, August.
    4. Muhammad Bilal Khan & Hummera Saleem & Malik Shahzad Shabbir & Xie Huobao, 2022. "The effects of globalization, energy consumption and economic growth on carbon dioxide emissions in South Asian countries," Energy & Environment, , vol. 33(1), pages 107-134, February.
    5. Dogan, Eyup & Seker, Fahri, 2016. "The influence of real output, renewable and non-renewable energy, trade and financial development on carbon emissions in the top renewable energy countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1074-1085.
    6. Usama Al-Mulali & Ilhan Ozturk & Hooi Lean, 2015. "The influence of economic growth, urbanization, trade openness, financial development, and renewable energy on pollution in Europe," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(1), pages 621-644, October.
    7. Chen, Ping-Yu & Chen, Sheng-Tung & Hsu, Chia-Sheng & Chen, Chi-Chung, 2016. "Modeling the global relationships among economic growth, energy consumption and CO2 emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 420-431.
    8. Charfeddine, Lanouar & Mrabet, Zouhair, 2017. "The impact of economic development and social-political factors on ecological footprint: A panel data analysis for 15 MENA countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 138-154.
    9. Farhani, Sahbi & Mrizak, Sana & Chaibi, Anissa & Rault, Christophe, 2014. "The environmental Kuznets curve and sustainability: A panel data analysis," Energy Policy, Elsevier, vol. 71(C), pages 189-198.
    10. Moataz Elshimy & Khadiga M. El-Aasar, 2020. "Carbon footprint, renewable energy, non-renewable energy, and livestock: testing the environmental Kuznets curve hypothesis for the Arab world," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(7), pages 6985-7012, October.
    11. Xiaoxia Shi & Haiyun Liu & Joshua Sunday Riti, 2019. "The role of energy mix and financial development in greenhouse gas (GHG) emissions’ reduction: evidence from ten leading CO2 emitting countries," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 36(3), pages 695-729, October.
    12. Nizar Harrathi & Ahmed Almohaimeed, 2022. "Determinants of Carbon Dioxide Emissions: New Empirical Evidence from MENA Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 12(1), pages 469-482.
    13. Shahzad, Syed Jawad Hussain & Rehman, Mobeen Ur & Hurr, Maryam & Zakaria, Muhammad, 2014. "Do Economic and Financial Development Increase Carbon Emission in Pakistan: Empirical Analysis through ARDL Cointegration and VECM Causality," MPRA Paper 60310, University Library of Munich, Germany.
    14. Omri, Anis & Daly, Saida & Rault, Christophe & Chaibi, Anissa, 2015. "Financial development, environmental quality, trade and economic growth: What causes what in MENA countries," Energy Economics, Elsevier, vol. 48(C), pages 242-252.
    15. Nasre Esfahani, Mohammad & Rasoulinezhad, Ehsan, 2015. "Will be there New CO2 Emitters in the Future? Evidence of Long-run Panel Co-integration for N-11 Countries," MPRA Paper 72692, University Library of Munich, Germany.
    16. Muhammad, Shahbaz & Adebola Solarin, Solarin & Ozturk, Ilhan, 2016. "Environmental Kuznets curve hypothesis and the role of globalization in selected African countries," MPRA Paper 69859, University Library of Munich, Germany, revised 04 Mar 2016.
    17. Sahbi Farhani & Sana Mrizak & Anissa Chaibi & Christophe Rault, 2014. "The Environmental Kuznets Curve and Sustainability: A Panel Data Analysis," CESifo Working Paper Series 4787, CESifo.
    18. Esily, Rehab R. & Yuanying, Chi & Ibrahiem, Dalia M. & Houssam, Nourhane & Makled, Randa A. & Chen, Yahui, 2023. "Environmental benefits of energy poverty alleviation, renewable resources, and urbanization in North Africa," Utilities Policy, Elsevier, vol. 82(C).
    19. Bilgili, Faik & Koçak, Emrah & Bulut, Ümit, 2016. "The dynamic impact of renewable energy consumption on CO2 emissions: A revisited Environmental Kuznets Curve approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 838-845.
    20. Mohammad Nasre Esfahani & Ehsan Rasoulinezhad, 2016. "Will be there New CO2 Emitters in the Future? Evidence of Longrun Panel Co-integration for N-11 Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 6(3), pages 463-470.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:6:p:3556-:d:773573. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.