IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v141y2021ics1364032121000514.html
   My bibliography  Save this article

Sorption enhanced gasification (SEG) of biomass for tailored syngas production with in-situ CO2 capture: Current status, process scale-up experiences and outlook

Author

Listed:
  • Parvez, Ashak Mahmud
  • Hafner, Selina
  • Hornberger, Matthias
  • Schmid, Max
  • Scheffknecht, Günter

Abstract

Sorption Enhanced Gasification (SEG) is being considered as a promising solid fuel conversion and carbon capture and sequestration technology since it can produce tailored syngas coupled with in-situ CO2 capture. Over the years, considerable research has been conducted with high grade biomass in laboratory and pilot scale facilities targeting technical and process scale-up viabilities of the SEG process. SEG has successfully been tested at semi industrial scale which demonstrates further scale-up potential (e.g. commercial demonstration plant) of this innovative technology. The results showed that the operation window of SEG laid at a gasification temperature ranging from 600 °C to 750 °C. By optimizing the process parameters, H2-rich syngas (>70 vol %db) and desired H2/CO ratios can be attained. Also, the total tar content of the optimized process is reported to be low compared to those obtained from classical fluidized bed gasification processes. So far, wood is mostly used as the feedstocks while tests with wastes including solid recovered fuels (SRFs) have also been conducted. Cheap and readily available natural sorbents (such as limestone) enable a satisfactory operation, however, issues associated with attrition and deactivation still need to be addressed. Accordingly, natural sorbents with improved properties, synthetic CaO-based sorbents as well as pre-treated natural sorbents are considered to overcome these limitations. This paper therefore discusses the current status of the SEG technology with an emphasis on its industrial applications for flexible syngas production with in-situ CO2 reduction. Moreover, challenges, process scale-up experiences and research gaps for the commercialization of this novel technology are identified in this review.

Suggested Citation

  • Parvez, Ashak Mahmud & Hafner, Selina & Hornberger, Matthias & Schmid, Max & Scheffknecht, Günter, 2021. "Sorption enhanced gasification (SEG) of biomass for tailored syngas production with in-situ CO2 capture: Current status, process scale-up experiences and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
  • Handle: RePEc:eee:rensus:v:141:y:2021:i:c:s1364032121000514
    DOI: 10.1016/j.rser.2021.110756
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121000514
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.110756?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Martínez, I. & Romano, M.C., 2016. "Flexible sorption enhanced gasification (SEG) of biomass for the production of synthetic natural gas (SNG) and liquid biofuels: Process assessment of stand-alone and power-to-gas plant schemes for SNG," Energy, Elsevier, vol. 113(C), pages 615-630.
    2. Fuchs, Josef & Schmid, Johannes Christian & Benedikt, Florian & Müller, Stefan & Hofbauer, Hermann & Stocker, Hugo & Kieberger, Nina & Bürgler, Thomas, 2018. "The impact of bed material cycle rate on in-situ CO2 removal for sorption enhanced reforming of different fuel types," Energy, Elsevier, vol. 162(C), pages 35-44.
    3. Göransson, Kristina & Söderlind, Ulf & He, Jie & Zhang, Wennan, 2011. "Review of syngas production via biomass DFBGs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 482-492, January.
    4. Fuchs, Josef & Schmid, Johannes C. & Müller, Stefan & Hofbauer, Hermann, 2019. "Dual fluidized bed gasification of biomass with selective carbon dioxide removal and limestone as bed material: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 212-231.
    5. Nikolaidis, Pavlos & Poullikkas, Andreas, 2017. "A comparative overview of hydrogen production processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 597-611.
    6. Wang, Ke & Hu, Xiumeng & Zhao, Pengfei & Yin, Zeguang, 2016. "Natural dolomite modified with carbon coating for cyclic high-temperature CO2 capture," Applied Energy, Elsevier, vol. 165(C), pages 14-21.
    7. Boyano, A. & Blanco-Marigorta, A.M. & Morosuk, T. & Tsatsaronis, G., 2011. "Exergoenvironmental analysis of a steam methane reforming process for hydrogen production," Energy, Elsevier, vol. 36(4), pages 2202-2214.
    8. Buentello-Montoya, David & Zhang, Xiaolei & Li, Jun & Ranade, Vivek & Marques, Simão & Geron, Marco, 2020. "Performance of biochar as a catalyst for tar steam reforming: Effect of the porous structure," Applied Energy, Elsevier, vol. 259(C).
    9. Karl, Jürgen & Pröll, Tobias, 2018. "Steam gasification of biomass in dual fluidized bed gasifiers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 64-78.
    10. Umeki, Kentaro & Yamamoto, Kouichi & Namioka, Tomoaki & Yoshikawa, Kunio, 2010. "High temperature steam-only gasification of woody biomass," Applied Energy, Elsevier, vol. 87(3), pages 791-798, March.
    11. Parthasarathy, Prakash & Narayanan, K. Sheeba, 2014. "Hydrogen production from steam gasification of biomass: Influence of process parameters on hydrogen yield – A review," Renewable Energy, Elsevier, vol. 66(C), pages 570-579.
    12. Rahman, Farahiyah Abdul & Aziz, Md Maniruzzaman A. & Saidur, R. & Bakar, Wan Azelee Wan Abu & Hainin, M.R & Putrajaya, Ramadhansyah & Hassan, Norhidayah Abdul, 2017. "Pollution to solution: Capture and sequestration of carbon dioxide (CO2) and its utilization as a renewable energy source for a sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 112-126.
    13. Buentello-Montoya, D.A. & Zhang, X. & Li, J., 2019. "The use of gasification solid products as catalysts for tar reforming," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 399-412.
    14. Chen, Huichao & Zhao, Changsui & Yang, Yanmei & Zhang, Pingping, 2012. "CO2 capture and attrition performance of CaO pellets with aluminate cement under pressurized carbonation," Applied Energy, Elsevier, vol. 91(1), pages 334-340.
    15. Benedikt, F. & Schmid, J.C. & Fuchs, J. & Mauerhofer, A.M. & Müller, S. & Hofbauer, H., 2018. "Fuel flexible gasification with an advanced 100 kW dual fluidized bed steam gasification pilot plant," Energy, Elsevier, vol. 164(C), pages 329-343.
    16. Abdin, Zainul & Zafaranloo, Ali & Rafiee, Ahmad & Mérida, Walter & Lipiński, Wojciech & Khalilpour, Kaveh R., 2020. "Hydrogen as an energy vector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    17. Erans, María & Manovic, Vasilije & Anthony, Edward J., 2016. "Calcium looping sorbents for CO2 capture," Applied Energy, Elsevier, vol. 180(C), pages 722-742.
    18. Ajay Kumar & David D. Jones & Milford A. Hanna, 2009. "Thermochemical Biomass Gasification: A Review of the Current Status of the Technology," Energies, MDPI, vol. 2(3), pages 1-26, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vera Marcantonio & Marcello De Falco & Enrico Bocci, 2022. "Non-Thermal Plasma Technology for CO 2 Conversion—An Overview of the Most Relevant Experimental Results and Kinetic Models," Energies, MDPI, vol. 15(20), pages 1-18, October.
    2. Jianwen Zhang & Jacob Cherian & Ashak Mahmud Parvez & Sarminah Samad & Muhammad Safdar Sial & Mohammad Athar Ali & Mohammed Arshad Khan, 2022. "Consequences of Sustainable Agricultural Productivity, Renewable Energy, and Environmental Decay: Recent Evidence from ASEAN Countries," Sustainability, MDPI, vol. 14(6), pages 1-13, March.
    3. Vera Marcantonio & Luisa Di Paola & Marcello De Falco & Mauro Capocelli, 2023. "Modeling of Biomass Gasification: From Thermodynamics to Process Simulations," Energies, MDPI, vol. 16(20), pages 1-30, October.
    4. Montagnaro, Fabio & Zaccariello, Lucio, 2023. "Performance assessment of a demonstration-scale biomass gasification power plant using material and energy flow analyses," Energy, Elsevier, vol. 284(C).
    5. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2023. "Socio-technical barriers to domestic hydrogen futures: Repurposing pipelines, policies, and public perceptions," Applied Energy, Elsevier, vol. 336(C).
    6. Liu, Rui & Li, Chongcong & Zheng, Jinhao & Xue, Feilong & Yang, Mingjun & Zhang, Yan, 2023. "Hydrogen-rich syngas production via sorption-enhanced steam gasification of biomass using FexNiyCaO bi-functional materials," Energy, Elsevier, vol. 281(C).
    7. Jhulimar Castro & Jonathan Leaver & Shusheng Pang, 2022. "Simulation and Techno-Economic Assessment of Hydrogen Production from Biomass Gasification-Based Processes: A Review," Energies, MDPI, vol. 15(22), pages 1-37, November.
    8. Li, Chongcong & Liu, Rui & Zheng, Jinhao & Zhang, Yan, 2023. "Thermodynamic study on the effects of operating parameters on CaO-based sorption enhanced steam gasification of biomass," Energy, Elsevier, vol. 273(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pio, D.T. & Tarelho, L.A.C. & Pinto, P.C.R., 2020. "Gasification-based biorefinery integration in the pulp and paper industry: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    2. Antonio Molino & Vincenzo Larocca & Simeone Chianese & Dino Musmarra, 2018. "Biofuels Production by Biomass Gasification: A Review," Energies, MDPI, vol. 11(4), pages 1-31, March.
    3. Guan, Guoqing & Kaewpanha, Malinee & Hao, Xiaogang & Abudula, Abuliti, 2016. "Catalytic steam reforming of biomass tar: Prospects and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 450-461.
    4. Khademi, Mohammad Hasan & Alipour-Dehkordi, Afshar & Nalchifard, Fereshteh, 2023. "Sustainable hydrogen and syngas production from waste valorization of biodiesel synthesis by-product: Green chemistry approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    5. Wan, Zhanghao & Yang, Shiliang & Wei, Yonggang & Hu, Jianhang & Wang, Hua, 2020. "CFD modeling of the flow dynamics and gasification in the combustor and gasifier of a dual fluidized bed pilot plant," Energy, Elsevier, vol. 198(C).
    6. Hoang, Anh Tuan & Pandey, Ashok & Martinez De Osés, Francisco Javier & Chen, Wei-Hsin & Said, Zafar & Ng, Kim Hoong & Ağbulut, Ümit & Tarełko, Wiesław & Ölçer, Aykut I. & Nguyen, Xuan Phuong, 2023. "Technological solutions for boosting hydrogen role in decarbonization strategies and net-zero goals of world shipping: Challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    7. Mauerhofer, A.M. & Schmid, J.C. & Benedikt, F. & Fuchs, J. & Müller, S. & Hofbauer, H., 2019. "Dual fluidized bed steam gasification: Change of product gas quality along the reactor height," Energy, Elsevier, vol. 173(C), pages 1256-1272.
    8. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.
    9. Anca-Couce, A. & Hochenauer, C. & Scharler, R., 2021. "Bioenergy technologies, uses, market and future trends with Austria as a case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    10. Burra, K.G. & Hussein, M.S. & Amano, R.S. & Gupta, A.K., 2016. "Syngas evolutionary behavior during chicken manure pyrolysis and air gasification," Applied Energy, Elsevier, vol. 181(C), pages 408-415.
    11. Suopajärvi, Hannu & Pongrácz, Eva & Fabritius, Timo, 2013. "The potential of using biomass-based reducing agents in the blast furnace: A review of thermochemical conversion technologies and assessments related to sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 511-528.
    12. Ansari, Khursheed B. & Gaikar, Vilas G., 2019. "Investigating production of hydrocarbon rich bio-oil from grassy biomass using vacuum pyrolysis coupled with online deoxygenation of volatile products over metallic iron," Renewable Energy, Elsevier, vol. 130(C), pages 305-318.
    13. Pio, D.T. & Tarelho, L.A.C., 2021. "Industrial gasification systems (>3 MWth) for bioenergy in Europe: Current status and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    14. Tian, Hailin & Li, Jie & Yan, Miao & Tong, Yen Wah & Wang, Chi-Hwa & Wang, Xiaonan, 2019. "Organic waste to biohydrogen: A critical review from technological development and environmental impact analysis perspective," Applied Energy, Elsevier, vol. 256(C).
    15. Benedikt, Florian & Kuba, Matthias & Schmid, Johannes Christian & Müller, Stefan & Hofbauer, Hermann, 2019. "Assessment of correlations between tar and product gas composition in dual fluidized bed steam gasification for online tar prediction," Applied Energy, Elsevier, vol. 238(C), pages 1138-1149.
    16. Ahsanullah Soomro & Shiyi Chen & Shiwei Ma & Wenguo Xiang, 2018. "Catalytic activities of nickel, dolomite, and olivine for tar removal and H2-enriched gas production in biomass gasification process," Energy & Environment, , vol. 29(6), pages 839-867, September.
    17. Wang, Ke & Zhou, Zhongyun & Zhao, Pengfei & Yin, Zeguang & Su, Zhen & Sun, Ji, 2017. "Molten sodium-fluoride-promoted high-performance Li4SiO4-based CO2 sorbents at low CO2 concentrations," Applied Energy, Elsevier, vol. 204(C), pages 403-412.
    18. Chutichai, Bhawasut & Patcharavorachot, Yaneeporn & Assabumrungrat, Suttichai & Arpornwichanop, Amornchai, 2015. "Parametric analysis of a circulating fluidized bed biomass gasifier for hydrogen production," Energy, Elsevier, vol. 82(C), pages 406-413.
    19. Huang, Yue & Zhu, Lin & He, Yangdong & Wang, Yuan & Hao, Qiang & Zhu, Yifei, 2023. "Carbon dioxide utilization based on exergoenvironmental sustainability assessment: A case study of CO2 hydrogenation to methanol," Energy, Elsevier, vol. 273(C).
    20. Toledo, Mario & Arriagada, Andrés & Ripoll, Nicolás & Salgansky, Eugene A. & Mujeebu, Muhammad Abdul, 2023. "Hydrogen and syngas production by hybrid filtration combustion: Progress and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:141:y:2021:i:c:s1364032121000514. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.