IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v135y2021ics1364032120305268.html
   My bibliography  Save this article

Bioenergy technologies, uses, market and future trends with Austria as a case study

Author

Listed:
  • Anca-Couce, A.
  • Hochenauer, C.
  • Scharler, R.

Abstract

The current bioenergy uses and conversion technologies as well as future trends for the production of heat, power, fuels and chemicals from biomass are reviewed. The focus is placed in Austria, which is selected due to its high bioenergy utilization, providing 18.4% of the gross energy final consumption in 2017, and its strong industrial and scientific position in the field. The most common bioenergy application in Austria is bioheat with 170 PJ in 2017 mainly obtained from woody biomass combustion, followed by biofuels with 21 PJ and bioelectricity with 17 PJ. Bioheat has a stable market, where Austrian manufacturers of boilers and stoves have a strong position exporting most of their production. Future developments in bioheat production should go in the line of further reducing emissions, increasing feedstock flexibility and coupling with other renewables. For bioelectricity and biofuels, the current framework does not promote the growth of the current main technologies, i.e. combined heat and power (CHP) based on biomass combustion or biogas and first generation biofuels. However, an increase in all bioenergy uses is required to achieve the Austrian plan to be climate neutral in 2040. The current initiatives and future possibilities to achieve this increase are presented and discussed, e.g. mandatory substitution of old oil boilers, production of biomethane and early commercialization of CHP with a high efficiency or demonstration of advanced biofuels production based on gasification.

Suggested Citation

  • Anca-Couce, A. & Hochenauer, C. & Scharler, R., 2021. "Bioenergy technologies, uses, market and future trends with Austria as a case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
  • Handle: RePEc:eee:rensus:v:135:y:2021:i:c:s1364032120305268
    DOI: 10.1016/j.rser.2020.110237
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032120305268
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2020.110237?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anca-Couce, Andrés & Caposciutti, Gianluca & Gruber, Thomas & Kelz, Joachim & Bauer, Thomas & Hochenauer, Christoph & Scharler, Robert, 2019. "Single large wood log conversion in a stove: Experiments and modelling," Renewable Energy, Elsevier, vol. 143(C), pages 890-897.
    2. Subotić, Vanja & Baldinelli, Arianna & Barelli, Linda & Scharler, Robert & Pongratz, Gernot & Hochenauer, Christoph & Anca-Couce, Andrés, 2019. "Applicability of the SOFC technology for coupling with biomass-gasifier systems: Short- and long-term experimental study on SOFC performance and degradation behaviour," Applied Energy, Elsevier, vol. 256(C).
    3. Mauerhofer, A.M. & Schmid, J.C. & Benedikt, F. & Fuchs, J. & Müller, S. & Hofbauer, H., 2019. "Dual fluidized bed steam gasification: Change of product gas quality along the reactor height," Energy, Elsevier, vol. 173(C), pages 1256-1272.
    4. Scarlat, Nicolae & Dallemand, Jean-François & Fahl, Fernando, 2018. "Biogas: Developments and perspectives in Europe," Renewable Energy, Elsevier, vol. 129(PA), pages 457-472.
    5. Penthor, Stefan & Zerobin, Florian & Mayer, Karl & Pröll, Tobias & Hofbauer, Hermann, 2015. "Investigation of the performance of a copper based oxygen carrier for chemical looping combustion in a 120kW pilot plant for gaseous fuels," Applied Energy, Elsevier, vol. 145(C), pages 52-59.
    6. Perkins, Greg & Bhaskar, Thallada & Konarova, Muxina, 2018. "Process development status of fast pyrolysis technologies for the manufacture of renewable transport fuels from biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 292-315.
    7. Karl, Jürgen & Pröll, Tobias, 2018. "Steam gasification of biomass in dual fluidized bed gasifiers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 64-78.
    8. Scharler, Robert & Gruber, Thomas & Ehrenhöfer, Armin & Kelz, Joachim & Bardar, Ramin Mehrabian & Bauer, Thomas & Hochenauer, Christoph & Anca-Couce, Andrés, 2020. "Transient CFD simulation of wood log combustion in stoves," Renewable Energy, Elsevier, vol. 145(C), pages 651-662.
    9. Benedikt, F. & Schmid, J.C. & Fuchs, J. & Mauerhofer, A.M. & Müller, S. & Hofbauer, H., 2018. "Fuel flexible gasification with an advanced 100 kW dual fluidized bed steam gasification pilot plant," Energy, Elsevier, vol. 164(C), pages 329-343.
    10. Goldemberg, Jose & Teixeira Coelho, Suani, 2004. "Renewable energy--traditional biomass vs. modern biomass," Energy Policy, Elsevier, vol. 32(6), pages 711-714, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Reyes, Y.A. & Pérez, M. & Barrera, E.L. & Martínez, Y. & Cheng, K.K., 2022. "Thermochemical conversion processes of Dichrostachys cinerea as a biofuel: A review of the Cuban case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    2. Zachl, A. & Buchmayr, M. & Gruber, J. & Anca-Couce, A. & Scharler, R. & Hochenauer, C., 2022. "Evaluation and extension of the load and fuel flexibility limits of a stratified downdraft gasifier," Energy, Elsevier, vol. 239(PD).
    3. Wang, Shucheng & Chen, Xiaoxu & Wei, Bing & Fu, Zhongguang & Li, Hongwei & Qin, Mei, 2023. "Thermodynamic analysis of a net zero emission system with CCHP and green DME production by integrating biomass gasification," Energy, Elsevier, vol. 273(C).
    4. Zachl, A. & Soria-Verdugo, A. & Buchmayr, M. & Gruber, J. & Anca-Couce, A. & Scharler, R. & Hochenauer, C., 2022. "Stratified downdraft gasification of wood chips with a significant bark content," Energy, Elsevier, vol. 261(PB).
    5. Zhang, Kai & Yin, Kedong & Yang, Wendong, 2022. "Predicting bioenergy power generation structure using a newly developed grey compositional data model: A case study in China," Renewable Energy, Elsevier, vol. 198(C), pages 695-711.
    6. Pongratz, Gernot & Subotić, Vanja & Hochenauer, Christoph & Scharler, Robert & Anca-Couce, Andrés, 2022. "Solid oxide fuel cell operation with biomass gasification product gases: Performance- and carbon deposition risk evaluation via a CFD modelling approach," Energy, Elsevier, vol. 244(PB).
    7. Diego Perrone & Angelo Algieri & Pietropaolo Morrone & Teresa Castiglione, 2021. "Energy and Economic Investigation of a Biodiesel-Fired Engine for Micro-Scale Cogeneration," Energies, MDPI, vol. 14(2), pages 1-28, January.
    8. Raghu KC & Jarno Föhr & Arun Gyawali & Tapio Ranta, 2021. "Investment and Profitability of Community Heating Systems Using Bioenergy in Finland: Opportunities and Challenges," Sustainability, MDPI, vol. 13(21), pages 1-15, October.
    9. Míguez, José Luis & Porteiro, Jacobo & Behrendt, Frank & Blanco, Diana & Patiño, David & Dieguez-Alonso, Alba, 2021. "Review of the use of additives to mitigate operational problems associated with the combustion of biomass with high content in ash-forming species," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    10. Mislav Kontek & Luka Brezinščak & Vanja Jurišić & Ivan Brandić & Alan Antonović & Božidar Matin & Karlo Špelić & Tajana Krička & Ana Matin, 2023. "Mitigating the Energy Crisis: Utilization of Seed Production Wastes for Energy Production in Continental Croatia," Energies, MDPI, vol. 16(2), pages 1-11, January.
    11. Jaworek, A. & Sobczyk, A.T. & Marchewicz, A. & Krupa, A. & Czech, T., 2021. "Particulate matter emission control from small residential boilers after biomass combustion. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    12. Pongratz, G. & Subotić, V. & Schroettner, H. & Hochenauer, C. & Skrzypkiewicz, M. & Kupecki, Jakub & Anca-Couce, A. & Scharler, R., 2021. "Analysis of H2S-related short-term degradation and regeneration of anode- and electrolyte supported solid oxide fuel cells fueled with biomass steam gasifier product gas," Energy, Elsevier, vol. 218(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wan, Zhanghao & Yang, Shiliang & Wei, Yonggang & Hu, Jianhang & Wang, Hua, 2020. "CFD modeling of the flow dynamics and gasification in the combustor and gasifier of a dual fluidized bed pilot plant," Energy, Elsevier, vol. 198(C).
    2. Aghaalikhani, Arash & Schmid, Johannes C. & Borello, Domenico & Fuchs, Joseph & Benedikt, Florian & Hofbauer, Herman & Rispoli, Franco & Henriksen, Ulrick B. & Sárossy, Zsuzsa & Cedola, Luca, 2019. "Detailed modelling of biomass steam gasification in a dual fluidized bed gasifier with temperature variation," Renewable Energy, Elsevier, vol. 143(C), pages 703-718.
    3. Chen, Tao & Sjöblom, Jonas & Ström, Henrik, 2022. "Numerical investigations of soot generation during wood-log combustion," Applied Energy, Elsevier, vol. 325(C).
    4. Pongratz, Gernot & Subotić, Vanja & Hochenauer, Christoph & Scharler, Robert & Anca-Couce, Andrés, 2022. "Solid oxide fuel cell operation with biomass gasification product gases: Performance- and carbon deposition risk evaluation via a CFD modelling approach," Energy, Elsevier, vol. 244(PB).
    5. Martin Hammerschmid & Alexander Bartik & Florian Benedikt & Marton Veress & Simon Pratschner & Stefan Müller & Hermann Hofbauer, 2023. "Economic and Ecological Impacts on the Integration of Biomass-Based SNG and FT Diesel in the Austrian Energy System," Energies, MDPI, vol. 16(16), pages 1-29, August.
    6. Fürsatz, K. & Fuchs, J. & Benedikt, F. & Kuba, M. & Hofbauer, H., 2021. "Effect of biomass fuel ash and bed material on the product gas composition in DFB steam gasification," Energy, Elsevier, vol. 219(C).
    7. Yongzhong Jiang & Valerii Havrysh & Oleksandr Klymchuk & Vitalii Nitsenko & Tomas Balezentis & Dalia Streimikiene, 2019. "Utilization of Crop Residue for Power Generation: The Case of Ukraine," Sustainability, MDPI, vol. 11(24), pages 1-21, December.
    8. Stanger, Lukas & Schirrer, Alexander & Benedikt, Florian & Bartik, Alexander & Jankovic, Stefan & Müller, Stefan & Kozek, Martin, 2023. "Dynamic modeling of dual fluidized bed steam gasification for control design," Energy, Elsevier, vol. 265(C).
    9. Parvez, Ashak Mahmud & Hafner, Selina & Hornberger, Matthias & Schmid, Max & Scheffknecht, Günter, 2021. "Sorption enhanced gasification (SEG) of biomass for tailored syngas production with in-situ CO2 capture: Current status, process scale-up experiences and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    10. Zhang, Fengxia & Yang, Shiliang & Yang, Bin & Wang, Hua, 2022. "Mesoscale bubble dynamics in the gasifier of a 1MWth dual fluidized bed gasifier for biomass gasification," Energy, Elsevier, vol. 238(PB).
    11. Yang, Shiliang & Wang, Hua & Wei, Yonggang & Hu, Jianhang & Chew, Jia Wei, 2019. "Eulerian-Lagrangian simulation of air-steam biomass gasification in a three-dimensional bubbling fluidized gasifier," Energy, Elsevier, vol. 181(C), pages 1075-1093.
    12. Song, Guohui & Xiao, Jun & Yan, Chao & Gu, Haiming & Zhao, Hao, 2022. "Quality of gaseous biofuels: Statistical assessment and guidance on production technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    13. Mac Clay, Pablo & Börner, Jan & Sellare, Jorge, 2023. "Institutional and macroeconomic stability mediate the effect of auctions on renewable energy capacity," Energy Policy, Elsevier, vol. 180(C).
    14. Mauerhofer, A.M. & Schmid, J.C. & Benedikt, F. & Fuchs, J. & Müller, S. & Hofbauer, H., 2019. "Dual fluidized bed steam gasification: Change of product gas quality along the reactor height," Energy, Elsevier, vol. 173(C), pages 1256-1272.
    15. Stančin, H. & Mikulčić, H. & Wang, X. & Duić, N., 2020. "A review on alternative fuels in future energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    16. Kolb, Sebastian & Plankenbühler, Thomas & Frank, Jonas & Dettelbacher, Johannes & Ludwig, Ralf & Karl, Jürgen & Dillig, Marius, 2021. "Scenarios for the integration of renewable gases into the German natural gas market – A simulation-based optimisation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    17. Vaidyanathan, Geeta & Sankaranarayanan, Ramani & Yap, Nonita T., 2019. "Bridging the chasm – Diffusion of energy innovations in poor infrastructure starved communities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 243-255.
    18. Oni, Babalola Aisosa & Sanni, Samuel Eshorame & Ikhazuangbe, Prosper Monday-Ohien & Ibegbu, Anayo Jerome, 2021. "Experimental investigation of steam-air gasification of Cymbopogon citratus using Ni/dolomite/CeO2/K2CO3 as catalyst in a dual stage reactor for syngas and hydrogen production," Energy, Elsevier, vol. 237(C).
    19. Fernandez, Helen Coarita & Buffiere, Pierre & Bayard, Rémy, 2022. "Understanding the role of mechanical pretreatment before anaerobic digestion: Lab-scale investigations," Renewable Energy, Elsevier, vol. 187(C), pages 193-203.
    20. Zhao, Xinyue & Chen, Heng & Zheng, Qiwei & Liu, Jun & Pan, Peiyuan & Xu, Gang & Zhao, Qinxin & Jiang, Xue, 2023. "Thermo-economic analysis of a novel hydrogen production system using medical waste and biogas with zero carbon emission," Energy, Elsevier, vol. 265(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:135:y:2021:i:c:s1364032120305268. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.