IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v265y2023ics0360544222032649.html
   My bibliography  Save this article

Dynamic modeling of dual fluidized bed steam gasification for control design

Author

Listed:
  • Stanger, Lukas
  • Schirrer, Alexander
  • Benedikt, Florian
  • Bartik, Alexander
  • Jankovic, Stefan
  • Müller, Stefan
  • Kozek, Martin

Abstract

Dual fluidized bed steam gasification allows the production of high-value product gas from woody biomass or biogenic residuals. Advanced control concepts such as model predictive control are promising approaches to improve the process performance and efficiency. These control techniques require dynamic models of the process that can predict the plant’s behavior as a function of the manipulated variables. This paper presents a gray-box modeling approach based on mass and energy balances to obtain a mathematical description of the temperatures inside the two reactors and the total mass flows leaving the reactors. The model incorporates data-driven components where first-principle modeling is hardly possible with reasonable effort. An artificial neural network is utilized to model the bed material circulation between the two reactors. Experiments were carried out at a 100 kW pilot plant to generate measurement data both for system identification and model validation. Simulations verify that the model achieves reliable predictions for the dual fluidized bed gasification process.

Suggested Citation

  • Stanger, Lukas & Schirrer, Alexander & Benedikt, Florian & Bartik, Alexander & Jankovic, Stefan & Müller, Stefan & Kozek, Martin, 2023. "Dynamic modeling of dual fluidized bed steam gasification for control design," Energy, Elsevier, vol. 265(C).
  • Handle: RePEc:eee:energy:v:265:y:2023:i:c:s0360544222032649
    DOI: 10.1016/j.energy.2022.126378
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222032649
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.126378?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mauerhofer, A.M. & Benedikt, F. & Schmid, J.C. & Fuchs, J. & Müller, S. & Hofbauer, H., 2018. "Influence of different bed material mixtures on dual fluidized bed steam gasification," Energy, Elsevier, vol. 157(C), pages 957-968.
    2. Kraft, Stephan & Kirnbauer, Friedrich & Hofbauer, Hermann, 2017. "CPFD simulations of an industrial-sized dual fluidized bed steam gasification system of biomass with 8MW fuel input," Applied Energy, Elsevier, vol. 190(C), pages 408-420.
    3. Ngo, Son Ich & Nguyen, Thanh D.B. & Lim, Young-Il & Song, Byung-Ho & Lee, Uen-Do & Choi, Young-Tai & Song, Jae-Hun, 2011. "Performance evaluation for dual circulating fluidized-bed steam gasifier of biomass using quasi-equilibrium three-stage gasification model," Applied Energy, Elsevier, vol. 88(12), pages 5208-5220.
    4. Mauerhofer, A.M. & Schmid, J.C. & Benedikt, F. & Fuchs, J. & Müller, S. & Hofbauer, H., 2019. "Dual fluidized bed steam gasification: Change of product gas quality along the reactor height," Energy, Elsevier, vol. 173(C), pages 1256-1272.
    5. Benedikt, F. & Schmid, J.C. & Fuchs, J. & Mauerhofer, A.M. & Müller, S. & Hofbauer, H., 2018. "Fuel flexible gasification with an advanced 100 kW dual fluidized bed steam gasification pilot plant," Energy, Elsevier, vol. 164(C), pages 329-343.
    6. Codina Gironès, Víctor & Moret, Stefano & Peduzzi, Emanuela & Nasato, Marco & Maréchal, François, 2017. "Optimal use of biomass in large-scale energy systems: Insights for energy policy," Energy, Elsevier, vol. 137(C), pages 789-797.
    7. Aghaalikhani, Arash & Schmid, Johannes C. & Borello, Domenico & Fuchs, Joseph & Benedikt, Florian & Hofbauer, Herman & Rispoli, Franco & Henriksen, Ulrick B. & Sárossy, Zsuzsa & Cedola, Luca, 2019. "Detailed modelling of biomass steam gasification in a dual fluidized bed gasifier with temperature variation," Renewable Energy, Elsevier, vol. 143(C), pages 703-718.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martin Hammerschmid & Daniel Cenk Rosenfeld & Alexander Bartik & Florian Benedikt & Josef Fuchs & Stefan Müller, 2023. "Methodology for the Development of Virtual Representations within the Process Development Framework of Energy Plants: From Digital Model to Digital Predictive Twin—A Review," Energies, MDPI, vol. 16(6), pages 1-30, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wan, Zhanghao & Yang, Shiliang & Wei, Yonggang & Hu, Jianhang & Wang, Hua, 2020. "CFD modeling of the flow dynamics and gasification in the combustor and gasifier of a dual fluidized bed pilot plant," Energy, Elsevier, vol. 198(C).
    2. Zhang, Fengxia & Yang, Shiliang & Yang, Bin & Wang, Hua, 2022. "Mesoscale bubble dynamics in the gasifier of a 1MWth dual fluidized bed gasifier for biomass gasification," Energy, Elsevier, vol. 238(PB).
    3. Mauerhofer, A.M. & Schmid, J.C. & Benedikt, F. & Fuchs, J. & Müller, S. & Hofbauer, H., 2019. "Dual fluidized bed steam gasification: Change of product gas quality along the reactor height," Energy, Elsevier, vol. 173(C), pages 1256-1272.
    4. Yang, Shiliang & Wang, Hua & Wei, Yonggang & Hu, Jianhang & Chew, Jia Wei, 2019. "Eulerian-Lagrangian simulation of air-steam biomass gasification in a three-dimensional bubbling fluidized gasifier," Energy, Elsevier, vol. 181(C), pages 1075-1093.
    5. Anca-Couce, A. & Hochenauer, C. & Scharler, R., 2021. "Bioenergy technologies, uses, market and future trends with Austria as a case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    6. Benedikt, Florian & Kuba, Matthias & Schmid, Johannes Christian & Müller, Stefan & Hofbauer, Hermann, 2019. "Assessment of correlations between tar and product gas composition in dual fluidized bed steam gasification for online tar prediction," Applied Energy, Elsevier, vol. 238(C), pages 1138-1149.
    7. Wan, Zhanghao & Hu, Jianhang & Qi, Xianjin, 2021. "Numerical analysis of hydrodynamics and thermochemical property of biomass gasification in a pilot-scale circulating fluidized bed," Energy, Elsevier, vol. 225(C).
    8. Nguyen, Nhut M. & Alobaid, Falah & May, Jan & Peters, Jens & Epple, Bernd, 2020. "Experimental study on steam gasification of torrefied woodchips in a bubbling fluidized bed reactor," Energy, Elsevier, vol. 202(C).
    9. Yang, Shiliang & Wan, Zhanghao & Wang, Shuai & Wang, Hua, 2020. "Computational fluid study of radial and axial segregation characteristics in a dual fluidized bed reactor system," Energy, Elsevier, vol. 209(C).
    10. Benedikt, F. & Schmid, J.C. & Fuchs, J. & Mauerhofer, A.M. & Müller, S. & Hofbauer, H., 2018. "Fuel flexible gasification with an advanced 100 kW dual fluidized bed steam gasification pilot plant," Energy, Elsevier, vol. 164(C), pages 329-343.
    11. Martin Hammerschmid & Alexander Bartik & Florian Benedikt & Marton Veress & Simon Pratschner & Stefan Müller & Hermann Hofbauer, 2023. "Economic and Ecological Impacts on the Integration of Biomass-Based SNG and FT Diesel in the Austrian Energy System," Energies, MDPI, vol. 16(16), pages 1-29, August.
    12. Fürsatz, K. & Fuchs, J. & Benedikt, F. & Kuba, M. & Hofbauer, H., 2021. "Effect of biomass fuel ash and bed material on the product gas composition in DFB steam gasification," Energy, Elsevier, vol. 219(C).
    13. Fuchs, Josef & Schmid, Johannes C. & Müller, Stefan & Hofbauer, Hermann, 2019. "Dual fluidized bed gasification of biomass with selective carbon dioxide removal and limestone as bed material: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 212-231.
    14. Fan, Feihu & Zheng, Min & Yang, Shiliang & Wang, Hua, 2021. "Numerical study of fluid dynamics and heat transfer property of dual fluidized bed gasifier," Energy, Elsevier, vol. 234(C).
    15. Aghaalikhani, Arash & Schmid, Johannes C. & Borello, Domenico & Fuchs, Joseph & Benedikt, Florian & Hofbauer, Herman & Rispoli, Franco & Henriksen, Ulrick B. & Sárossy, Zsuzsa & Cedola, Luca, 2019. "Detailed modelling of biomass steam gasification in a dual fluidized bed gasifier with temperature variation," Renewable Energy, Elsevier, vol. 143(C), pages 703-718.
    16. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.
    17. Frazer Musonda & Markus Millinger & Daniela Thrän, 2020. "Greenhouse Gas Abatement Potentials and Economics of Selected Biochemicals in Germany," Sustainability, MDPI, vol. 12(6), pages 1-19, March.
    18. Setyawan, M. Ismail Bagus & Dafiqurrohman, Hafif & Akbar, Maha Hidayatullah & Surjosatyo, Adi, 2021. "Characterizing a two-stage downdraft biomass gasifier using a representative particle model," Renewable Energy, Elsevier, vol. 173(C), pages 750-767.
    19. Benim, Ali Cemal & Pfeiffelmann, Björn & Ocłoń, Paweł & Taler, Jan, 2019. "Computational investigation of a lifted hydrogen flame with LES and FGM," Energy, Elsevier, vol. 173(C), pages 1172-1181.
    20. Zang, Guiyan & Zhang, Jianan & Jia, Junxi & Lora, Electo Silva & Ratner, Albert, 2020. "Life cycle assessment of power-generation systems based on biomass integrated gasification combined cycles," Renewable Energy, Elsevier, vol. 149(C), pages 336-346.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:265:y:2023:i:c:s0360544222032649. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.