IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v162y2018icp35-44.html
   My bibliography  Save this article

The impact of bed material cycle rate on in-situ CO2 removal for sorption enhanced reforming of different fuel types

Author

Listed:
  • Fuchs, Josef
  • Schmid, Johannes Christian
  • Benedikt, Florian
  • Müller, Stefan
  • Hofbauer, Hermann
  • Stocker, Hugo
  • Kieberger, Nina
  • Bürgler, Thomas

Abstract

A dual fluidized bed reactor system produces a nitrogen-free product gas by using steam as gasification agent. Additionally, the usage of limestone as bed material allows for the in-situ removal of carbon dioxide out of the product gas. Hence, a hydrogen-rich product gas with a high reduction potential for the steel industry can be generated. This so-called “sorption enhanced reforming” process has already been proven applicable for wood as fuel, but since the costs for biomass like wood have increased significantly during the last years, cheaper fuels are of interest. The experimental results of three different biogenic fuel types (soft wood, rice husk and bark) and one fossil fuel type (lignite) are discussed in detail. In the past, research mainly focused on temperature dependency of the process since it seemed to be the main factor for carbon dioxide sorption in the gasification reactor and therefore product gas composition. Within this work, it is shown that the bed material cycle rate should not be disregarded and is a key factor within the process. The presented findings allow a detailed understanding of “sorption enhanced reforming”, the influence of bed material cycle rate, and the influence of volatile matter in the fuel.

Suggested Citation

  • Fuchs, Josef & Schmid, Johannes Christian & Benedikt, Florian & Müller, Stefan & Hofbauer, Hermann & Stocker, Hugo & Kieberger, Nina & Bürgler, Thomas, 2018. "The impact of bed material cycle rate on in-situ CO2 removal for sorption enhanced reforming of different fuel types," Energy, Elsevier, vol. 162(C), pages 35-44.
  • Handle: RePEc:eee:energy:v:162:y:2018:i:c:p:35-44
    DOI: 10.1016/j.energy.2018.07.199
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218314968
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.07.199?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mauerhofer, A.M. & Schmid, J.C. & Benedikt, F. & Fuchs, J. & Müller, S. & Hofbauer, H., 2019. "Dual fluidized bed steam gasification: Change of product gas quality along the reactor height," Energy, Elsevier, vol. 173(C), pages 1256-1272.
    2. Rosenfeld, Daniel C. & Böhm, Hans & Lindorfer, Johannes & Lehner, Markus, 2020. "Scenario analysis of implementing a power-to-gas and biomass gasification system in an integrated steel plant: A techno-economic and environmental study," Renewable Energy, Elsevier, vol. 147(P1), pages 1511-1524.
    3. Benedikt, Florian & Kuba, Matthias & Schmid, Johannes Christian & Müller, Stefan & Hofbauer, Hermann, 2019. "Assessment of correlations between tar and product gas composition in dual fluidized bed steam gasification for online tar prediction," Applied Energy, Elsevier, vol. 238(C), pages 1138-1149.
    4. Ritvanen, Jouni & Myöhänen, Kari & Pitkäoja, Antti & Hyppänen, Timo, 2021. "Modeling of industrial-scale sorption enhanced gasification process: One-dimensional simulations for the operation of coupled reactor system," Energy, Elsevier, vol. 226(C).
    5. Fuchs, Josef & Schmid, Johannes C. & Müller, Stefan & Hofbauer, Hermann, 2019. "Dual fluidized bed gasification of biomass with selective carbon dioxide removal and limestone as bed material: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 212-231.
    6. Parvez, Ashak Mahmud & Hafner, Selina & Hornberger, Matthias & Schmid, Max & Scheffknecht, Günter, 2021. "Sorption enhanced gasification (SEG) of biomass for tailored syngas production with in-situ CO2 capture: Current status, process scale-up experiences and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    7. Chein, Rei-Yu & Hsu, Wen-Huai, 2020. "Thermodynamic equilibrium analysis of H2-rich syngas production via sorption-enhanced chemical looping biomass gasification," Renewable Energy, Elsevier, vol. 153(C), pages 117-129.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:162:y:2018:i:c:p:35-44. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.