IDEAS home Printed from https://ideas.repec.org/p/tin/wpaper/20040005.html
   My bibliography  Save this paper

Decoupling Economic Growth and Energy Use. An Empirical Cross-Country Analysis for 10 Manufacturing Sectors

Author

Listed:
  • Peter Mulder

    (International Institute for Applied Systems Analysis, Laxenburg, Austria)

  • Henri L.F. de Groot

    (Faculty of Economics and Business Administration, Vrije Universiteit Amsterdam)

Abstract

This paper provides an empirical analysis of decoupling economic growth and energy use and its various determinants by exploring trends in energy- and labour productivity across 10 manufacturing sectors and 14 OECD countries for the period 1970-1997. We explicitly aim to trace back aggregate developments in the manufacturing sector to developments at the level of individual subsectors. A cross-country decomposition analysis reveals that in some countries structural changes contributed considerably to aggregate manufacturing energy-productivity growth and, hence, to decoupling, while in other countries they partly offset energy-efficiency improvements. In contrast, structural changes only play a minor role in explaining aggregate manufacturing labour-productivity developments. Furthermore, we find labour-productivity growth to be higher on average than energy-productivity growth. Over time, this bias towards labour-productivity growth is increasing in the aggregate manufacturing sector, while it is decreasing in most manufacturing subsectors.

Suggested Citation

  • Peter Mulder & Henri L.F. de Groot, 2004. "Decoupling Economic Growth and Energy Use. An Empirical Cross-Country Analysis for 10 Manufacturing Sectors," Tinbergen Institute Discussion Papers 04-005/3, Tinbergen Institute.
  • Handle: RePEc:tin:wpaper:20040005
    as

    Download full text from publisher

    File URL: https://papers.tinbergen.nl/04005.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fagerberg, Jan, 2000. "Technological progress, structural change and productivity growth: a comparative study," Structural Change and Economic Dynamics, Elsevier, vol. 11(4), pages 393-411, December.
    2. Smulders, Sjak & de Nooij, Michiel, 2003. "The impact of energy conservation on technology and economic growth," Resource and Energy Economics, Elsevier, vol. 25(1), pages 59-79, February.
    3. Robert J. Barro, 1998. "Determinants of Economic Growth: A Cross-Country Empirical Study," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262522543, December.
    4. Bart van Ark (ed.), 1997. "Economic Growth in the Long Run," Books, Edward Elgar Publishing, volume 0, number 1061.
    5. Chenery, Hollis B., 1984. "Economic Structure and Performance," Elsevier Monographs, Elsevier, edition 1, number 9780126800609 edited by Syrquin, Moshe & Taylor, Lance & Westphal, Larry E..
    6. John W. Kendrick, 1961. "Productivity Trends in the United States," NBER Books, National Bureau of Economic Research, Inc, number kend61-1, March.
    7. Dale W. Jorgenson, 1984. "The Role of Energy in Productivity Growth," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 11-26.
    8. Greening, Lorna A. & Davis, William B. & Schipper, Lee & Khrushch, Marta, 1997. "Comparison of six decomposition methods: application to aggregate energy intensity for manufacturing in 10 OECD countries," Energy Economics, Elsevier, vol. 19(3), pages 375-390, July.
    9. Richard G. Newell & Adam B. Jaffe & Robert N. Stavins, 1999. "The Induced Innovation Hypothesis and Energy-Saving Technological Change," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 114(3), pages 941-975.
    10. Miketa, Asami, 2001. "Analysis of energy intensity developments in manufacturing sectors in industrialized and developing countries," Energy Policy, Elsevier, vol. 29(10), pages 769-775, August.
    11. Daron Acemoglu, 2002. "Directed Technical Change," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 69(4), pages 781-809.
    12. Dale W. Jorgenson, 1986. "The Great Transition: Energy and Economic Change," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 1-13.
    13. Rosenberg,Nathan, 1994. "Exploring the Black Box," Cambridge Books, Cambridge University Press, number 9780521459556, January.
    14. Henri L.F de Groot, 2000. "Growth, Unemployment and Deindustrialization," Books, Edward Elgar Publishing, number 1946.
    15. Dirk Pilat, 1996. "Labour Productivity Levels in OECD Countries: Estimates for Manufacturing and Selected Service Sectors," OECD Economics Department Working Papers 169, OECD Publishing.
    16. Eichhammer, Wolfgang & Wilhelm, Mannsbart, 1997. "Industrial energy efficiency : Indicators for a European cross-country comparison of energy efficiency in the manufacturing industry," Energy Policy, Elsevier, vol. 25(7-9), pages 759-772.
    17. Balk, B.M., 2001. "Aggregation Methods in International Comparisons," ERIM Report Series Research in Management ERS-2001-41-MKT, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    18. Abbas A. Taheri & Rodney Stevenson, 2002. "Energy Price, Environmental Policy, and Technological Bias," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 85-107.
    19. Unander, Fridtjof & Karbuz, Sohbet & Schipper, Lee & Khrushch, Marta & Ting, Michael, 1999. "Manufacturing energy use in OECD countries: decomposition of long-term trends," Energy Policy, Elsevier, vol. 27(13), pages 769-778, November.
    20. Jeroen C.J.M. van den Bergh (ed.), 1999. "Handbook of Environmental and Resource Economics," Books, Edward Elgar Publishing, number 801.
    21. David Dollar & Edward N. Wolff, 1993. "Competitiveness, Convergence, and International Specialization," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262041359, December.
    22. Benton F. Massell, 1961. "A Disaggregated View of Technical Change," Journal of Political Economy, University of Chicago Press, vol. 69, pages 547-547.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yanli Ji & Jie Xue, 2022. "Decoupling Effect of County Carbon Emissions and Economic Growth in China: Empirical Evidence from Jiangsu Province," IJERPH, MDPI, vol. 19(6), pages 1-22, March.
    2. Dmitry Burakov, 2016. "Elasticity of Energy Intensity on a Regional Scale: An Empirical Study of International Trade Channel," International Journal of Energy Economics and Policy, Econjournals, vol. 6(1), pages 65-75.
    3. Bithas, K. & Kalimeris, P., 2013. "Re-estimating the decoupling effect: Is there an actual transition towards a less energy-intensive economy?," Energy, Elsevier, vol. 51(C), pages 78-84.
    4. Idoko Ahmed Itodo & Shahrzad Safaeimanesh & Festus Victor Bekun, 2017. "Energy Use and Growth of Manufacturing Sector: Evidence from Turkey," Academic Journal of Economic Studies, Faculty of Finance, Banking and Accountancy Bucharest,"Dimitrie Cantemir" Christian University Bucharest, vol. 3(1), pages 88-96, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter Mulder & Henri de Groot, 2003. "International comparison of sectoral energy- and labour-productivity performance; stylised facts and decomposition of trends," CPB Discussion Paper 22.rdf, CPB Netherlands Bureau for Economic Policy Analysis.
    2. Peter Mulder & Henri de Groot, 2003. "International comparison of sectoral energy- and labour-productivity performance; stylised facts and decomposition of trends," CPB Discussion Paper 22, CPB Netherlands Bureau for Economic Policy Analysis.
    3. Raymond J.G.M. Florax & Henri L.F. de Groot & Peter Mulder, 2011. "Energy Efficiency and Technological Change," Chapters, in: Raymond J.G.M. Florax & Henri L.F. de Groot & Peter Mulder (ed.), Improving Energy Efficiency through Technology, chapter 1, Edward Elgar Publishing.
    4. Peter Mulder & Henri L.F. de Groot, 2011. "Energy-Productivity Performance Across 14 OECD Countries: The Role of Energy-Extensive Sectors," Chapters, in: Raymond J.G.M. Florax & Henri L.F. de Groot & Peter Mulder (ed.), Improving Energy Efficiency through Technology, chapter 3, Edward Elgar Publishing.
    5. Miketa, Asami & Mulder, Peter, 2005. "Energy productivity across developed and developing countries in 10 manufacturing sectors: Patterns of growth and convergence," Energy Economics, Elsevier, vol. 27(3), pages 429-453, May.
    6. Mulder, Peter & de Groot, Henri L.F., 2012. "Structural change and convergence of energy intensity across OECD countries, 1970–2005," Energy Economics, Elsevier, vol. 34(6), pages 1910-1921.
    7. Mulder, Peter & de Groot, Henri L.F., 2013. "Dutch sectoral energy intensity developments in international perspective, 1987–2005," Energy Policy, Elsevier, vol. 52(C), pages 501-512.
    8. David I. Stern, 2010. "The Role of Energy in Economic Growth," CCEP Working Papers 0310, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
    9. Peter Mulder & Henri Groot, 2007. "Sectoral Energy- and Labour-Productivity Convergence," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 36(1), pages 85-112, January.
    10. Philippe Aghion & Antoine Dechezleprêtre & David Hémous & Ralf Martin & John Van Reenen, 2016. "Carbon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto Industry," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 1-51.
    11. Li, Zhen & Wu, Baijun & Wang, Danyang & Tang, Maogang, 2022. "Government mandatory energy-biased technological progress and enterprises' environmental performance: Evidence from a quasi-natural experiment of cleaner production standards in China," Energy Policy, Elsevier, vol. 162(C).
    12. Michael Peneder & Karl Aiginger & Gernot Hutschenreiter & Markus Marterbauer, 2001. "Structural Change and Economic Growth," WIFO Studies, WIFO, number 20668, Juni.
    13. Gerlagh, Reyer & Lise, Wietze, 2005. "Carbon taxes: A drop in the ocean, or a drop that erodes the stone? The effect of carbon taxes on technological change," Ecological Economics, Elsevier, vol. 54(2-3), pages 241-260, August.
    14. Rajbhandari, Ashish & Zhang, Fan, 2018. "Does energy efficiency promote economic growth? Evidence from a multicountry and multisectoral panel dataset," Energy Economics, Elsevier, vol. 69(C), pages 128-139.
    15. Liu, Na & Ang, B.W., 2007. "Factors shaping aggregate energy intensity trend for industry: Energy intensity versus product mix," Energy Economics, Elsevier, vol. 29(4), pages 609-635, July.
    16. Boyce, John R., 2019. "The paradox of value, directed technical change, and the relative abundance of the chemical elements," Resource and Energy Economics, Elsevier, vol. 58(C).
    17. Madlener, R. & Alcott, B., 2009. "Energy rebound and economic growth: A review of the main issues and research needs," Energy, Elsevier, vol. 34(3), pages 370-376.
    18. Karen Pittel & Lucas Bretschger, 2010. "The implications of heterogeneous resource intensities on technical change and growth," Canadian Journal of Economics, Canadian Economics Association, vol. 43(4), pages 1173-1197, November.
    19. Jin, Wei & Zhang, ZhongXiang, "undated". "Product Homogeneity, Knowledge Spillovers, and Innovation: Why Energy Sector is Perplexed by a Slow Pace of Technological Progress," Working Papers 249504, Australian National University, Centre for Climate Economics & Policy.
    20. Corrado Maria & Edwin Werf, 2008. "Carbon leakage revisited: unilateral climate policy with directed technical change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 39(2), pages 55-74, February.

    More about this item

    Keywords

    energy productivity; labour productivity; convergence; sectoral analysis;
    All these keywords.

    JEL classification:

    • O13 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Agriculture; Natural Resources; Environment; Other Primary Products
    • O47 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - Empirical Studies of Economic Growth; Aggregate Productivity; Cross-Country Output Convergence
    • O5 - Economic Development, Innovation, Technological Change, and Growth - - Economywide Country Studies
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:20040005. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tinbergen Office +31 (0)10-4088900 (email available below). General contact details of provider: https://edirc.repec.org/data/tinbenl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.