IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v141y2025ics014098832400762x.html
   My bibliography  Save this article

Vertical spillovers and the energy intensity of European industries

Author

Listed:
  • Rahko, Jaana

Abstract

The prior literature has argued that inter-sectoral supply chain links provide an important channel for technology diffusion and productivity spillovers across industries, but whether such vertical spillovers influence industrial energy use has remained unexplored thus far. This study analyzes how the energy intensity of European industries is affected by vertical technology and energy productivity spillovers along the industrial supply chain. The analysis combines international input-output tables, energy use and patent data. Panel data from 2000 to 2014 for 27 industries in 29 countries is analyzed using panel fixed effects and instrumental variable estimation methods. The findings reveal that supply-use links channel significant vertical spillovers that promote a decline in energy intensity in downstream industries. These spillovers appear to be more strongly associated with overall energy intensity changes in upstream industries and, to some degree, with patented green innovations in upstream industries.

Suggested Citation

  • Rahko, Jaana, 2025. "Vertical spillovers and the energy intensity of European industries," Energy Economics, Elsevier, vol. 141(C).
  • Handle: RePEc:eee:eneeco:v:141:y:2025:i:c:s014098832400762x
    DOI: 10.1016/j.eneco.2024.108053
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S014098832400762X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2024.108053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Copeland, Brian R. & Taylor, M. Scott, 1999. "Trade, spatial separation, and the environment," Journal of International Economics, Elsevier, vol. 47(1), pages 137-168, February.
    2. Sun, Huaping & Edziah, Bless Kofi & Kporsu, Anthony Kwaku & Sarkodie, Samuel Asumadu & Taghizadeh-Hesary, Farhad, 2021. "Energy efficiency: The role of technological innovation and knowledge spillover," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    3. Do Yeong Lee & Sung Y. Park, 2023. "Global energy intensity convergence using a spatial panel growth model," Applied Economics, Taylor & Francis Journals, vol. 55(41), pages 4745-4764, September.
    4. Martin, Ralf & Muûls, Mirabelle & de Preux, Laure B. & Wagner, Ulrich J., 2012. "Anatomy of a paradox: Management practices, organizational structure and energy efficiency," Journal of Environmental Economics and Management, Elsevier, vol. 63(2), pages 208-223.
    5. Kleibergen, Frank & Paap, Richard, 2006. "Generalized reduced rank tests using the singular value decomposition," Journal of Econometrics, Elsevier, vol. 133(1), pages 97-126, July.
    6. Lescaroux, François, 2008. "Decomposition of US manufacturing energy intensity and elasticities of components with respect to energy prices," Energy Economics, Elsevier, vol. 30(3), pages 1068-1080, May.
    7. Victor Ajayi & David Reiner, 2020. "European Industrial Energy Intensity: Innovation, Environmental Regulation, and Price Effects," The Energy Journal, , vol. 41(4), pages 105-128, July.
    8. Karen Fisher-Vanden & Yong Hu & Gary Jefferson & Michael Rock & Michael Toman, 2016. "Factors Influencing Energy Intensity in Four Chinese Industries," The Energy Journal, , vol. 37(1_suppl), pages 153-178, January.
    9. Kirill Borusyak & Peter Hull & Xavier Jaravel, 2022. "Quasi-Experimental Shift-Share Research Designs," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 89(1), pages 181-213.
    10. Lundgren, Tommy & Marklund, Per-Olov & Zhang, Shanshan, 2016. "Industrial energy demand and energy efficiency – Evidence from Sweden," Resource and Energy Economics, Elsevier, vol. 43(C), pages 130-152.
    11. Filippini, Massimo & Hunt, Lester C., 2015. "Measurement of energy efficiency based on economic foundations," Energy Economics, Elsevier, vol. 52(S1), pages 5-16.
    12. Backlund, Sandra & Thollander, Patrik & Palm, Jenny & Ottosson, Mikael, 2012. "Extending the energy efficiency gap," Energy Policy, Elsevier, vol. 51(C), pages 392-396.
    13. Sanderson, Eleanor & Windmeijer, Frank, 2016. "A weak instrument F-test in linear IV models with multiple endogenous variables," Journal of Econometrics, Elsevier, vol. 190(2), pages 212-221.
    14. Adam B. Jaffe & Manuel Trajtenberg & Rebecca Henderson, 1993. "Geographic Localization of Knowledge Spillovers as Evidenced by Patent Citations," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 108(3), pages 577-598.
    15. Marius Ley & Tobias Stucki & Martin Woerter, 2016. "The Impact of Energy Prices on Green Innovation," The Energy Journal, , vol. 37(1), pages 41-76, January.
    16. Wang, En-Ze & Lee, Chien-Chiang & Li, Yaya, 2022. "Assessing the impact of industrial robots on manufacturing energy intensity in 38 countries," Energy Economics, Elsevier, vol. 105(C).
    17. Timothy J. Bartik, 1991. "Who Benefits from State and Local Economic Development Policies?," Books from Upjohn Press, W.E. Upjohn Institute for Employment Research, number wbsle.
    18. Dorner, Matthias & Harhoff, Dietmar, 2018. "A novel technology-industry concordance table based on linked inventor-establishment data," Research Policy, Elsevier, vol. 47(4), pages 768-781.
    19. Brian R. Copeland & M. Scott Taylor, 2004. "Trade, Growth, and the Environment," Journal of Economic Literature, American Economic Association, vol. 42(1), pages 7-71, March.
    20. Jiang, Lei & Folmer, Henk & Ji, Minhe & Zhou, P., 2018. "Revisiting cross-province energy intensity convergence in China: A spatial panel analysis," Energy Policy, Elsevier, vol. 121(C), pages 252-263.
    21. G. Serrano-Domingo & B. Cabrer-Borrás, 2017. "Direct and indirect knowledge spillovers and industrial productivity," Industry and Innovation, Taylor & Francis Journals, vol. 24(2), pages 165-189, February.
    22. A. Greening, Lorna & Greene, David L. & Difiglio, Carmen, 2000. "Energy efficiency and consumption -- the rebound effect -- a survey," Energy Policy, Elsevier, vol. 28(6-7), pages 389-401, June.
    23. Benedict Probst & Simon Touboul & Matthieu Glachant & Antoine Dechezleprêtre, 2021. "Global trends in the invention and diffusion of climate change mitigation technologies," Nature Energy, Nature, vol. 6(11), pages 1077-1086, November.
    24. Mulder, Peter & de Groot, Henri L.F. & Pfeiffer, Birte, 2014. "Dynamics and determinants of energy intensity in the service sector: A cross-country analysis, 1980–2005," Ecological Economics, Elsevier, vol. 100(C), pages 1-15.
    25. Popp, David C., 2001. "The effect of new technology on energy consumption," Resource and Energy Economics, Elsevier, vol. 23(3), pages 215-239, July.
    26. Voigt, Sebastian & De Cian, Enrica & Schymura, Michael & Verdolini, Elena, 2014. "Energy intensity developments in 40 major economies: Structural change or technology improvement?," Energy Economics, Elsevier, vol. 41(C), pages 47-62.
    27. Amjadi, Golnaz & Lundgren, Tommy & Persson, Lars, 2018. "The Rebound Effect in Swedish Heavy Industry," Energy Economics, Elsevier, vol. 71(C), pages 140-148.
    28. Verdolini, Elena & Galeotti, Marzio, 2011. "At home and abroad: An empirical analysis of innovation and diffusion in energy technologies," Journal of Environmental Economics and Management, Elsevier, vol. 61(2), pages 119-134, March.
    29. Hall, Bronwyn H. & Mairesse, Jacques & Mohnen, Pierre, 2010. "Measuring the Returns to R&D," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 1033-1082, Elsevier.
    30. Adetutu, Morakinyo O. & Glass, Anthony J. & Weyman-Jones, Thomas G., 2016. "Decomposing energy demand across BRIIC countries," Energy Economics, Elsevier, vol. 54(C), pages 396-404.
    31. Zvi Griliches, 1998. "Issues in Assessing the Contribution of Research and Development to Productivity Growth," NBER Chapters, in: R&D and Productivity: The Econometric Evidence, pages 17-45, National Bureau of Economic Research, Inc.
    32. Ghisetti, Claudia & Quatraro, Francesco, 2017. "Green Technologies and Environmental Productivity: A Cross-sectoral Analysis of Direct and Indirect Effects in Italian Regions," Ecological Economics, Elsevier, vol. 132(C), pages 1-13.
    33. Chiara Franco & Giovanni Marin, 2017. "The Effect of Within-Sector, Upstream and Downstream Environmental Taxes on Innovation and Productivity," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 66(2), pages 261-291, February.
    34. Paul Goldsmith-Pinkham & Isaac Sorkin & Henry Swift, 2020. "Bartik Instruments: What, When, Why, and How," American Economic Review, American Economic Association, vol. 110(8), pages 2586-2624, August.
    35. Wan, Jun & Baylis, Kathy & Mulder, Peter, 2015. "Trade-facilitated technology spillovers in energy productivity convergence processes across EU countries," Energy Economics, Elsevier, vol. 48(C), pages 253-264.
    36. Beata Smarzynska Javorcik, 2004. "Does Foreign Direct Investment Increase the Productivity of Domestic Firms? In Search of Spillovers Through Backward Linkages," American Economic Review, American Economic Association, vol. 94(3), pages 605-627, June.
    37. Marin, Giovanni & Palma, Alessandro, 2017. "Technology invention and adoption in residential energy consumption," Energy Economics, Elsevier, vol. 66(C), pages 85-98.
    38. Lybbert, Travis J. & Zolas, Nikolas J., 2014. "Getting patents and economic data to speak to each other: An ‘Algorithmic Links with Probabilities’ approach for joint analyses of patenting and economic activity," Research Policy, Elsevier, vol. 43(3), pages 530-542.
    39. Werner Antweiler & Kathryn Harrison, 2003. "Toxic release inventories and green consumerism: empirical evidence from Canada," Canadian Journal of Economics, Canadian Economics Association, vol. 36(2), pages 495-520, May.
    40. Sharimakin, Akinsehinwa & Glass, Anthony J. & Saal, David S. & Glass, Karligash, 2018. "Dynamic multilevel modelling of industrial energy demand in Europe," Energy Economics, Elsevier, vol. 74(C), pages 120-130.
    41. Hauknes, Johan & Knell, Mark, 2009. "Embodied knowledge and sectoral linkages: An input-output approach to the interaction of high- and low-tech industries," Research Policy, Elsevier, vol. 38(3), pages 459-469, April.
    42. Nathan Goldschlag & Travis J. Lybbert & Nikolas J. Zolas, 2020. "Tracking the technological composition of industries with algorithmic patent concordances," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 29(6), pages 582-602, August.
    43. Pan, Xiuzhen & Wei, Zixiang & Han, Botang & Shahbaz, Muhammad, 2021. "The heterogeneous impacts of interregional green technology spillover on energy intensity in China," Energy Economics, Elsevier, vol. 96(C).
    44. Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
    45. Harald Badinger & Peter Egger, 2016. "Productivity Spillovers Across Countries and Industries: New Evidence From OECD Countries," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 78(4), pages 501-521, August.
    46. Lichao Wu & Lili Wang & Lan Lin, 2023. "Learn to be green: FDI spillover effects on eco-innovation in China," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 32(5), pages 1192-1216.
    47. Todo, Yasuyuki & Matous, Petr & Inoue, Hiroyasu, 2016. "The strength of long ties and the weakness of strong ties: Knowledge diffusion through supply chain networks," Research Policy, Elsevier, vol. 45(9), pages 1890-1906.
    48. Benedict Probst & Simon Touboul & Matthieu Glachant & Antoine Dechezleprêtre, 2021. "Global Trends in the Innovation and Diffusion of Climate Change Mitigation Technologies," Working Papers hal-03190012, HAL.
    49. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
    50. Wolff, Edward N. & Ishaq Nadiri, M., 1993. "Spillover effects, linkage structure, and research and development," Structural Change and Economic Dynamics, Elsevier, vol. 4(2), pages 315-331, December.
    51. Ivan Haščič & Mauro Migotto, 2015. "Measuring environmental innovation using patent data," OECD Environment Working Papers 89, OECD Publishing.
    52. Parker, Steven & Liddle, Brantley, 2016. "Energy efficiency in the manufacturing sector of the OECD: Analysis of price elasticities," Energy Economics, Elsevier, vol. 58(C), pages 38-45.
    53. Edward N. Wolff, 2011. "Spillovers, Linkages, and Productivity Growth in the US Economy, 1958 to 2007," NBER Working Papers 16864, National Bureau of Economic Research, Inc.
    54. Wurlod, Jules-Daniel & Noailly, Joëlle, 2018. "The impact of green innovation on energy intensity: An empirical analysis for 14 industrial sectors in OECD countries," Energy Economics, Elsevier, vol. 71(C), pages 47-61.
    55. Huang, Junbing & Du, Dan & Tao, Qizhi, 2017. "An analysis of technological factors and energy intensity in China," Energy Policy, Elsevier, vol. 109(C), pages 1-9.
    56. David Popp, 2002. "Induced Innovation and Energy Prices," American Economic Review, American Economic Association, vol. 92(1), pages 160-180, March.
    57. Ang, B.W. & Xu, X.Y., 2013. "Tracking industrial energy efficiency trends using index decomposition analysis," Energy Economics, Elsevier, vol. 40(C), pages 1014-1021.
    58. Rexhäuser, Sascha & Löschel, Andreas, 2015. "Invention in energy technologies: Comparing energy efficiency and renewable energy inventions at the firm level," Energy Policy, Elsevier, vol. 83(C), pages 206-217.
    59. Yuxin Li & Derek Bosworth, 2020. "R&D spillovers in a supply chain and productivity performance in British firms," The Journal of Technology Transfer, Springer, vol. 45(1), pages 177-204, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ajayi, V. & Reiner, D., 2018. "European Industrial Energy Intensity: The Role of Innovation 1995-2009," Cambridge Working Papers in Economics 1835, Faculty of Economics, University of Cambridge.
    2. Sun, Huaping & Edziah, Bless Kofi & Kporsu, Anthony Kwaku & Sarkodie, Samuel Asumadu & Taghizadeh-Hesary, Farhad, 2021. "Energy efficiency: The role of technological innovation and knowledge spillover," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    3. Wurlod, Jules-Daniel & Noailly, Joëlle, 2018. "The impact of green innovation on energy intensity: An empirical analysis for 14 industrial sectors in OECD countries," Energy Economics, Elsevier, vol. 71(C), pages 47-61.
    4. Wang, En-Ze & Lee, Chien-Chiang & Li, Yaya, 2022. "Assessing the impact of industrial robots on manufacturing energy intensity in 38 countries," Energy Economics, Elsevier, vol. 105(C).
    5. Li, Yaya & Cobbinah, Joana & Abban, Olivier Joseph & Veglianti, Eleonora, 2023. "Does green manufacturing technology innovation decrease energy intensity for sustainable development?," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 1010-1025.
    6. Liu, Fengqin & Sim, Jae-yeon & Sun, Huaping & Edziah, Bless Kofi & Adom, Philip Kofi & Song, Shunfeng, 2023. "Assessing the role of economic globalization on energy efficiency: Evidence from a global perspective," China Economic Review, Elsevier, vol. 77(C).
    7. Frattini, Federico Fabio & Vona, Francesco & Bontadini, Filippo, 2024. "Does Green Re-industrialization Pay off? Impacts on Employment, Wages and Productivity," FEEM Working Papers 344791, Fondazione Eni Enrico Mattei (FEEM).
    8. Valeria Costantini & Francesco Crespi & Giovanni Marin & Elena Paglialunga, 2016. "Eco-innovation, sustainable supply chains and environmental performance in European industries," LEM Papers Series 2016/19, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    9. Singer, Gregor, 2024. "Complementary inputs and industrial development: can lower electricity prices improve energy efficiency?," LSE Research Online Documents on Economics 122365, London School of Economics and Political Science, LSE Library.
    10. Marin, Giovanni & Vona, Francesco, 2019. "Climate policies and skill-biased employment dynamics: Evidence from EU countries," Journal of Environmental Economics and Management, Elsevier, vol. 98(C).
    11. Philip Kerner & Torben Klarl & Tobias Wendler, 2021. "Green Technologies, Environmental Policy and Regional Growth," Bremen Papers on Economics & Innovation 2104, University of Bremen, Faculty of Business Studies and Economics.
    12. Fan, Maoqing & Zheng, Haitao, 2019. "The impact of factor price changes and technological progress on the energy intensity of China's industries: Kalman filter-based econometric method," Structural Change and Economic Dynamics, Elsevier, vol. 49(C), pages 340-353.
    13. Marin, Giovanni & Vona, Francesco, 2021. "The impact of energy prices on socioeconomic and environmental performance: Evidence from French manufacturing establishments, 1997–2015," European Economic Review, Elsevier, vol. 135(C).
    14. Garrone, Paola & Grilli, Luca & Mrkajic, Boris, 2017. "The energy-efficient transformation of EU business enterprises: Adapting policies to contextual factors," Energy Policy, Elsevier, vol. 109(C), pages 49-58.
    15. Pan, Xiuzhen & Wei, Zixiang & Han, Botang & Shahbaz, Muhammad, 2021. "The heterogeneous impacts of interregional green technology spillover on energy intensity in China," Energy Economics, Elsevier, vol. 96(C).
    16. Christina Poetzsch, 2017. "Technology transfer on a two-way street: R&D spillovers through intermediate input usage and supply," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 153(4), pages 735-751, November.
    17. Parker, Steven & Liddle, Brantley, 2016. "Energy efficiency in the manufacturing sector of the OECD: Analysis of price elasticities," Energy Economics, Elsevier, vol. 58(C), pages 38-45.
    18. Mare Sarr & Joëlle Noailly, 2017. "Innovation, Diffusion, Growth and the Environment: Taking Stock and Charting New Directions," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 66(3), pages 393-407, March.
    19. Rik L. Rozendaal & Herman R. J. Vollebergh & Rik Rozendaal, 2021. "Policy-Induced Innovation in Clean Technologies: Evidence from the Car Market," CESifo Working Paper Series 9422, CESifo.
    20. Wendler, Tobias & Töbelmann, Daniel & Günther, Jutta, 2021. "Natural resources and technology - on the mitigating effect of green tech," VfS Annual Conference 2021 (Virtual Conference): Climate Economics 242416, Verein für Socialpolitik / German Economic Association.

    More about this item

    Keywords

    Energy intensity; Technological development; Vertical spillovers; Supply chain;
    All these keywords.

    JEL classification:

    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • C26 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Instrumental Variables (IV) Estimation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:141:y:2025:i:c:s014098832400762x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.