IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

The Impact of Energy Prices on Green Innovation

Based on patent data and industry specific energy prices for 18 OECD countries over 30 years we investigate on an industry level the impact of energy prices on green innovation activities. Our econometric models show that energy prices and green innovation activities are positively related and that energy prices have a significantly positive impact on the share of green innovations in non-green innovations. More concretely, our main model shows that a 10% increase of the average energy prices of the previous five years results in a 2.7% and 4.5% increase of the number of green innovations and the share of green innovations in non-green innovations, respectively. We also find that the impact of energy prices increases with an increasing lag between energy prices and innovation activities. Robustness tests confirm the main results.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://dx.doi.org/10.3929/ethz-a-009922725
Download Restriction: no

Paper provided by KOF Swiss Economic Institute, ETH Zurich in its series KOF Working papers with number 13-340.

as
in new window

Length: 48 pages
Date of creation: Aug 2013
Handle: RePEc:kof:wpskof:13-340
Contact details of provider: Postal:
Leonhardstrasse 21, CH-8092 Zürich

Phone: +41 44 632 42 39
Fax: +41 44 632 12 18
Web page: http://www.kof.ethz.ch
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as
in new window


  1. Armin Schmutzler, 2001. "Environmental Regulations and Managerial Myopia," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 18(1), pages 87-100, January.
  2. Verdolini, Elena & Galeotti, Marzio, 2011. "At home and abroad: An empirical analysis of innovation and diffusion in energy technologies," Journal of Environmental Economics and Management, Elsevier, vol. 61(2), pages 119-134, March.
  3. Blundell, Richard & Griffith, Rachel & Van Reenen, John, 1995. "Dynamic Count Data Models of Technological Innovation," Economic Journal, Royal Economic Society, vol. 105(429), pages 333-344, March.
  4. Horbach, Jens & Rammer, Christian & Rennings, Klaus, 2012. "Determinants of eco-innovations by type of environmental impact — The role of regulatory push/pull, technology push and market pull," Ecological Economics, Elsevier, vol. 78(C), pages 112-122.
  5. Cockburn, Iain & Griliches, Zvi, 1988. "Industry Effects and Appropriability Measures in the Stock Market's Valuation of R&D and Patents," American Economic Review, American Economic Association, vol. 78(2), pages 419-423, May.
  6. Joseph M. Crabb & Daniel K.N. Johnson, 2010. "Fueling Innovation: The Impact of Oil Prices and CAFE Standards on Energy-Efficient Automotive Technology," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 199-216.
  7. Lanjouw, Jean Olson & Mody, Ashoka, 1996. "Innovation and the international diffusion of environmentally responsive technology," Research Policy, Elsevier, vol. 25(4), pages 549-571, June.
  8. Lucas W. Davis & Lutz Kilian, 2011. "Estimating the effect of a gasoline tax on carbon emissions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(7), pages 1187-1214, November.
  9. Zvi Griliches, 1998. "Patent Statistics as Economic Indicators: A Survey," NBER Chapters,in: R&D and Productivity: The Econometric Evidence, pages 287-343 National Bureau of Economic Research, Inc.
  10. Philippe Aghion & Antoine Dechezleprêtre & David Hémous & Ralf Martin & John Van Reenen, 2016. "Carbon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto Industry," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 1-51.
  11. Zvi Griliches, 1998. "Issues in Assessing the Contribution of Research and Development to Productivity Growth," NBER Chapters,in: R&D and Productivity: The Econometric Evidence, pages 17-45 National Bureau of Economic Research, Inc.
  12. Mohr, Robert D., 2002. "Technical Change, External Economies, and the Porter Hypothesis," Journal of Environmental Economics and Management, Elsevier, vol. 43(1), pages 158-168, January.
  13. Shanjun Li & Joshua Linn & Erich Muehlegger, 2014. "Gasoline Taxes and Consumer Behavior," American Economic Journal: Economic Policy, American Economic Association, vol. 6(4), pages 302-342, November.
  14. Beise, Marian & Rennings, Klaus, 2005. "Lead markets and regulation: a framework for analyzing the international diffusion of environmental innovations," Ecological Economics, Elsevier, vol. 52(1), pages 5-17, January.
  15. Bronwyn H. Hall & Adam Jaffe & Manuel Trajtenberg, 2005. "Market Value and Patent Citations," RAND Journal of Economics, The RAND Corporation, vol. 36(1), pages 16-38, Spring.
  16. Tobias Stucki & Martin Woerter, 2012. "Determinants of Green Innovation," KOF Working papers 12-314, KOF Swiss Economic Institute, ETH Zurich.
  17. Nick Johnstone & Ivan Haščič & Julie Poirier & Marion Hemar & Christian Michel, 2012. "Environmental policy stringency and technological innovation: evidence from survey data and patent counts," Applied Economics, Taylor & Francis Journals, vol. 44(17), pages 2157-2170, June.
  18. Wolfgang Keller, 2002. "Geographic Localization of International Technology Diffusion," American Economic Review, American Economic Association, vol. 92(1), pages 120-142, March.
  19. David Popp, 2011. "International Technology Transfer, Climate Change, and the Clean Development Mechanism," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 5(1), pages 131-152, Winter.
  20. Marin, Giovanni, 2014. "Do eco-innovations harm productivity growth through crowding out? Results of an extended CDM model for Italy," Research Policy, Elsevier, vol. 43(2), pages 301-317.
  21. Carraro, Carlo & Siniscaico, Domenico, 1994. "Environmental policy reconsidered: The role of technological innovation," European Economic Review, Elsevier, vol. 38(3-4), pages 545-554, April.
  22. Adam B. Jaffe & Karen Palmer, 1997. "Environmental Regulation And Innovation: A Panel Data Study," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 610-619, November.
  23. Nick Johnstone & Ivan Haščič & David Popp, 2010. "Renewable Energy Policies and Technological Innovation: Evidence Based on Patent Counts," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 45(1), pages 133-155, January.
  24. repec:fth:harver:1473 is not listed on IDEAS
  25. George van Leeuwen & Pierre Mohnen, 2013. "Revisiting the Porter Hypothesis: An Empirical Analysis of Green Innovation for the Netherlands," CIRANO Working Papers 2013s-02, CIRANO.
  26. Lybbert, Travis J. & Zolas, Nikolas J., 2014. "Getting patents and economic data to speak to each other: An ‘Algorithmic Links with Probabilities’ approach for joint analyses of patenting and economic activity," Research Policy, Elsevier, vol. 43(3), pages 530-542.
  27. Hall, Bronwyn H. & Helmers, Christian, 2013. "Innovation and diffusion of clean/green technology: Can patent commons help?," Journal of Environmental Economics and Management, Elsevier, vol. 66(1), pages 33-51.
  28. David Popp, 2002. "Induced Innovation and Energy Prices," American Economic Review, American Economic Association, vol. 92(1), pages 160-180, March.
  29. Scott, K. Rebecca, 2012. "Rational habits in gasoline demand," Energy Economics, Elsevier, vol. 34(5), pages 1713-1723.
  30. Ghalwash, Tarek, 2007. "Energy taxes as a signaling device: An empirical analysis of consumer preferences," Energy Policy, Elsevier, vol. 35(1), pages 29-38, January.
  31. Jaffe, Adam B, 1989. "Real Effects of Academic Research," American Economic Review, American Economic Association, vol. 79(5), pages 957-970, December.
  32. Richard G. Newell & Adam B. Jaffe & Robert N. Stavins, 1999. "The Induced Innovation Hypothesis and Energy-Saving Technological Change," The Quarterly Journal of Economics, Oxford University Press, vol. 114(3), pages 941-975.
  33. Im, Kyung So & Pesaran, M. Hashem & Shin, Yongcheol, 2003. "Testing for unit roots in heterogeneous panels," Journal of Econometrics, Elsevier, vol. 115(1), pages 53-74, July.
  34. Robert D. Mohr & Shrawantee Saha, 2008. "Distribution of Environmental Costs and Benefits, Additional Distortions, and the Porter Hypothesis," Land Economics, University of Wisconsin Press, vol. 84(4), pages 689-700.
  35. Ghalwash, Tarek, 2004. "Energy Taxes as a Signaling Device: An Empirical Analysis of Consumer Preferences," Umeå Economic Studies 646, Umeå University, Department of Economics.
  36. Levin, Andrew & Lin, Chien-Fu & James Chu, Chia-Shang, 2002. "Unit root tests in panel data: asymptotic and finite-sample properties," Journal of Econometrics, Elsevier, vol. 108(1), pages 1-24, May.
  37. Brunnermeier, Smita B. & Cohen, Mark A., 2003. "Determinants of environmental innovation in US manufacturing industries," Journal of Environmental Economics and Management, Elsevier, vol. 45(2), pages 278-293, March.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:kof:wpskof:13-340. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.