IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i21p6910-d661395.html
   My bibliography  Save this article

Electric Cooking Diary in Bangladesh: Energy Requirement, Cost of Cooking Fuel, Prospects, and Challenges

Author

Listed:
  • Avijit Saha

    (Department of Electrical and Electronic Engineering, United International University, Dhaka 1212, Bangladesh
    Department of Electrical and Electronic Engineering, Independent University Bangladesh, Dhaka 1229, Bangladesh)

  • Md. Abdur Razzak

    (Department of Electrical and Electronic Engineering, Independent University Bangladesh, Dhaka 1229, Bangladesh)

  • M. Rezwan Khan

    (Department of Electrical and Electronic Engineering, United International University, Dhaka 1212, Bangladesh)

Abstract

Detrimental effects exerted by biomass-based traditional cookstoves on health, environment, hygiene, and the soaring price of gas makes it imperative to investigate the feasibility of electric cooking as a promising clean cooking fuel in the context of Bangladesh. However, the adoption of electric cooking is unlikely to be welcomed if the monthly cost of electricity consumed by the electric cooking appliances is not comparable to traditional cooking fuels. So far, no study has been reported in this respect. Therefore, this paper is aimed to assess the energy consumption of available electric cooking appliances for cooking typical Bangladeshi dishes. Estimated monthly electricity cost of electric cooking is also reported and then compared to that of traditional cooking fuels. For the study purpose, three respondent families were provided with a rice cooker, hot plate, induction cooker and electric pressure cooker for cooking their daily meals. After four months of use, data related to dish cooked, amount of food, cooking time, and energy consumption were collected which shows that hot plate and rice cooker were the least preferred appliances due to their poor workmanship and limited use respectively. On the contrary, despite the fact that electric pressure cookers cannot perform all types of frying, it was the most preferred appliance owing to its ability to significantly reduce the cooking time and its less energy consumption. Induction cooker was less preferred for the additional requirement of compatible cook pots. The study also reveals that monthly energy requirements for electric cooking varied from 72–87 kWh corresponding to a cooking electricity bill ranging from BDT 504–609 per month (USD 6–7.5) which is less expensive as compared with biomass and LPG based cooking. This paper also highlights the prospects and challenges associated with the adoption of electricity as the primary cooking fuel in Bangladesh.

Suggested Citation

  • Avijit Saha & Md. Abdur Razzak & M. Rezwan Khan, 2021. "Electric Cooking Diary in Bangladesh: Energy Requirement, Cost of Cooking Fuel, Prospects, and Challenges," Energies, MDPI, vol. 14(21), pages 1-15, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:6910-:d:661395
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/21/6910/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/21/6910/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tembo, Solomon T. & Mulenga, Brian P. & Sitko, Nicholas, 2015. "Cooking Fuel Choice in Urban Zambia: Implications on Forest Cover," Food Security Collaborative Working Papers 202883, Michigan State University, Department of Agricultural, Food, and Resource Economics.
    2. Bonan, Jacopo & Pareglio, Stefano & Tavoni, Massimo, 2017. "Access to modern energy: a review of barriers, drivers and impacts," Environment and Development Economics, Cambridge University Press, vol. 22(5), pages 491-516, October.
    3. Andadari, Roos Kities & Mulder, Peter & Rietveld, Piet, 2014. "Energy poverty reduction by fuel switching. Impact evaluation of the LPG conversion program in Indonesia," Energy Policy, Elsevier, vol. 66(C), pages 436-449.
    4. Khandelwal, Meena & Hill, Matthew E. & Greenough, Paul & Anthony, Jerry & Quill, Misha & Linderman, Marc & Udaykumar, H.S., 2017. "Why Have Improved Cook-Stove Initiatives in India Failed?," World Development, Elsevier, vol. 92(C), pages 13-27.
    5. Ruiz-Mercado, Ilse & Masera, Omar & Zamora, Hilda & Smith, Kirk R., 2011. "Adoption and sustained use of improved cookstoves," Energy Policy, Elsevier, vol. 39(12), pages 7557-7566.
    6. Jon Leary & Bridget Menyeh & Vimbai Chapungu & Karin Troncoso, 2021. "eCooking: Challenges and Opportunities from a Consumer Behaviour Perspective," Energies, MDPI, vol. 14(14), pages 1-27, July.
    7. Budya, Hanung & Yasir Arofat, Muhammad, 2011. "Providing cleaner energy access in Indonesia through the megaproject of kerosene conversion to LPG," Energy Policy, Elsevier, vol. 39(12), pages 7575-7586.
    8. Ravindranath, N. H. & Ramakrishna, J., 1997. "Energy options for cooking in India," Energy Policy, Elsevier, vol. 25(1), pages 63-75, January.
    9. Robert Van Buskirk & Lawrence Kachione & Gilbert Robert & Rachel Kanyerere & Christina Gilbert & James Majoni, 2021. "How to Make Off-Grid Solar Electric Cooking Cheaper Than Wood-Based Cooking," Energies, MDPI, vol. 14(14), pages 1-21, July.
    10. Ansila Kweka & Anna Clements & Megan Bomba & Nora Schürhoff & Joseph Bundala & Erick Mgonda & Mattias Nilsson & Elliot Avila & Nigel Scott, 2021. "Tracking the Adoption of Electric Pressure Cookers among Mini-Grid Customers in Tanzania," Energies, MDPI, vol. 14(15), pages 1-24, July.
    11. M. Rezwan Khan & Intekhab Alam, 2020. "A Solar PV-Based Inverter-Less Grid-Integrated Cooking Solution for Low-Cost Clean Cooking," Energies, MDPI, vol. 13(20), pages 1-14, October.
    12. Shrimali, Gireesh & Slaski, Xander & Thurber, Mark C. & Zerriffi, Hisham, 2011. "Improved stoves in India: A study of sustainable business models," Energy Policy, Elsevier, vol. 39(12), pages 7543-7556.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Simon Batchelor & Ed Brown & Nigel Scott & Matthew Leach & Anna Clements & Jon Leary, 2022. "Mutual Support—Modern Energy Planning Inclusive of Cooking—A Review of Research into Action in Africa and Asia since 2018," Energies, MDPI, vol. 15(16), pages 1-29, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vania Vigolo & Rezarta Sallaku & Federico Testa, 2018. "Drivers and Barriers to Clean Cooking: A Systematic Literature Review from a Consumer Behavior Perspective," Sustainability, MDPI, vol. 10(11), pages 1-21, November.
    2. Vanschoenwinkel, Janka & Lizin, Sebastien & Swinnen, Gilbert & Azadi, Hossein & Van Passel, Steven, 2014. "Solar cooking in Senegalese villages: An application of best–worst scaling," Energy Policy, Elsevier, vol. 67(C), pages 447-458.
    3. Simon Batchelor & Ed Brown & Nigel Scott & Matthew Leach & Anna Clements & Jon Leary, 2022. "Mutual Support—Modern Energy Planning Inclusive of Cooking—A Review of Research into Action in Africa and Asia since 2018," Energies, MDPI, vol. 15(16), pages 1-29, August.
    4. Sutar, Kailasnath B. & Kohli, Sangeeta & Ravi, M.R. & Ray, Anjan, 2015. "Biomass cookstoves: A review of technical aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1128-1166.
    5. Bonan, Jacopo & Battiston, Pietro & Bleck, Jaimie & LeMay-Boucher, Philippe & Pareglio, Stefano & Sarr, Bassirou & Tavoni, Massimo, 2021. "Social interaction and technology adoption: Experimental evidence from improved cookstoves in Mali," World Development, Elsevier, vol. 144(C).
    6. Malla, Sunil & Timilsina, Govinda R, 2014. "Household cooking fuel choice and adoption of improved cookstoves in developing countries : a review," Policy Research Working Paper Series 6903, The World Bank.
    7. Olabisi, Michael & Tschirley, David L. & Nyange, David & Awokuse, Titus, 2019. "Energy demand substitution from biomass to imported kerosene: Evidence from Tanzania," Energy Policy, Elsevier, vol. 130(C), pages 243-252.
    8. Khalid Waleed & Faisal Mehmood Mirza, 2023. "Examining fuel choice patterns through household energy transition index: an alternative to traditional energy ladder and stacking models," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 6449-6501, July.
    9. Flores Lanza, Micaela & Leonard, Alycia & Hirmer, Stephanie, 2024. "Geospatial and socioeconomic prediction of value-driven clean cooking uptake," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    10. Imelda, Imelda, 2018. "The Response of Consumption to Fuel Switching : Panel Data Estimates," UC3M Working papers. Economics 27653, Universidad Carlos III de Madrid. Departamento de Economía.
    11. Jing Zhang & Roger Raufer & Lingxuan Liu, 2020. "Solar Home Systems for Clean Cooking: A Cost–Health Benefit Analysis of Lower-Middle-Income Countries in Southeast Asia," Sustainability, MDPI, vol. 12(9), pages 1-14, May.
    12. Bensch, Gunther & Kluve, Jochen & Stöterau, Jonathan, 2021. "The market-based dissemination of energy-access technologies as a business model for rural entrepreneurs: Evidence from Kenya," Resource and Energy Economics, Elsevier, vol. 66(C).
    13. Gould, Carlos F. & Urpelainen, Johannes, 2018. "LPG as a clean cooking fuel: Adoption, use, and impact in rural India," Energy Policy, Elsevier, vol. 122(C), pages 395-408.
    14. Gould, Carlos F. & Schlesinger, Samuel B. & Molina, Emilio & Bejarano, M. Lorena & Valarezo, Alfredo & Jack, Darby W., 2020. "Household fuel mixes in peri-urban and rural Ecuador: Explaining the context of LPG, patterns of continued firewood use, and the challenges of induction cooking," Energy Policy, Elsevier, vol. 136(C).
    15. Tushar Bharati & Yiwei Qian & Jeonghwan Yun, 2020. "Fueling the Engines of Liberation with Cleaner Cooking Fuel," Economics Discussion / Working Papers 20-03, The University of Western Australia, Department of Economics.
    16. Cutz, L. & Masera, O. & Santana, D. & Faaij, A.P.C., 2017. "Switching to efficient technologies in traditional biomass intensive countries: The resultant change in emissions," Energy, Elsevier, vol. 126(C), pages 513-526.
    17. Imelda,, 2020. "Cooking that kills: Cleaner energy access, indoor air pollution, and health," Journal of Development Economics, Elsevier, vol. 147(C).
    18. Enrique Cabello-Vargas & Azucena Escobedo-Izquierdo & Arturo Morales-Acevedo, 2021. "Review on Rural Energy Access Policies," International Journal of Energy Economics and Policy, Econjournals, vol. 11(5), pages 157-171.
    19. Yawale, Satish Kumar & Hanaoka, Tatsuya & Kapshe, Manmohan, 2021. "Development of energy balance table for rural and urban households and evaluation of energy consumption in Indian states," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    20. Atteridge, Aaron & Weitz, Nina, 2017. "A political economy perspective on technology innovation in the Kenyan clean cookstove sector," Energy Policy, Elsevier, vol. 110(C), pages 303-312.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:6910-:d:661395. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.