IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v39y2011i12p7557-7566.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this article

Adoption and sustained use of improved cookstoves

Author

Listed:
  • Ruiz-Mercado, Ilse
  • Masera, Omar
  • Zamora, Hilda
  • Smith, Kirk R.

Abstract

The adoption and sustained use of improved cookstoves are critical performance parameters of the cooking system that must be monitored just like the rest of the stove technical requirements to ensure the sustainability of their benefits. No stove program can achieve its goals unless people initially accept the stoves and continue using them on a long-term basis. When a new stove is brought into a household, commonly a stacking of stoves and fuels takes place with each device being used for the cooking practices where it fits best. Therefore, to better understand the adoption process and assess the impacts of introducing a new stove it is necessary to examine the relative advantages of each device in terms of each of the main cooking practices and available fuels. An emerging generation of sensor-based tools is making possible continuous and objective monitoring of the stove adoption process (from acceptance to sustained use or disadoption), and has enabled its scalability. Such monitoring is also needed for transparent verification in carbon projects and for improved dissemination by strategically targeting the users with the highest adoption potential and the substitution of cooking practices with the highest indoor air pollution or greenhouse gas contributions.

Suggested Citation

  • Ruiz-Mercado, Ilse & Masera, Omar & Zamora, Hilda & Smith, Kirk R., 2011. "Adoption and sustained use of improved cookstoves," Energy Policy, Elsevier, vol. 39(12), pages 7557-7566.
  • Handle: RePEc:eee:enepol:v:39:y:2011:i:12:p:7557-7566
    DOI: 10.1016/j.enpol.2011.03.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421511002084
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2011.03.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Agarwal, Bina, 1983. "Diffusion of rural innovations: Some analytical issues and the case of wood-burning stoves," World Development, Elsevier, vol. 11(4), pages 359-376, April.
    2. Masera, Omar R. & Saatkamp, Barbara D. & Kammen, Daniel M., 2000. "From Linear Fuel Switching to Multiple Cooking Strategies: A Critique and Alternative to the Energy Ladder Model," World Development, Elsevier, vol. 28(12), pages 2083-2103, December.
    3. Troncoso, Karin & Castillo, Alicia & Masera, Omar & Merino, Leticia, 2007. "Social perceptions about a technological innovation for fuelwood cooking: Case study in rural Mexico," Energy Policy, Elsevier, vol. 35(5), pages 2799-2810, May.
    4. Hiemstra-van der Horst, Greg & Hovorka, Alice J., 2008. "Reassessing the "energy ladder": Household energy use in Maun, Botswana," Energy Policy, Elsevier, vol. 36(9), pages 3333-3344, September.
    5. Heltberg, Rasmus, 2004. "Fuel switching: evidence from eight developing countries," Energy Economics, Elsevier, vol. 26(5), pages 869-887, September.
    6. Smith, Kirk R. & Shuhua, Gu & Kun, Huang & Daxiong, Qiu, 1993. "One hundred million improved cookstoves in China: How was it done?," World Development, Elsevier, vol. 21(6), pages 941-961, June.
    7. Prins, Remco & Verhoef, Peter C. & Franses, Philip Hans, 2009. "The impact of adoption timing on new service usage and early disadoption," International Journal of Research in Marketing, Elsevier, vol. 26(4), pages 304-313.
    8. Heltberg, Rasmus, 2005. "Factors determining household fuel choice in Guatemala," Environment and Development Economics, Cambridge University Press, vol. 10(3), pages 337-361, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guta, Dawit Diriba, 2014. "Effect of fuelwood scarcity and socio-economic factors on household bio-based energy use and energy substitution in rural Ethiopia," Energy Policy, Elsevier, vol. 75(C), pages 217-227.
    2. van der Kroon, Bianca & Brouwer, Roy & van Beukering, Pieter J.H., 2013. "The energy ladder: Theoretical myth or empirical truth? Results from a meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 504-513.
    3. Malla, Sunil & Timilsina, Govinda R, 2014. "Household cooking fuel choice and adoption of improved cookstoves in developing countries : a review," Policy Research Working Paper Series 6903, The World Bank.
    4. Kojo Sarfo Gyamfi & Elena Gaura & James Brusey & Alessandro Bezerra Trindade & Nandor Verba, 2020. "Understanding Household Fuel Choice Behaviour in the Amazonas State, Brazil: Effects of Validation and Feature Selection," Energies, MDPI, vol. 13(15), pages 1-21, July.
    5. Takama, Takeshi & Tsephel, Stanzin & Johnson, Francis X., 2012. "Evaluating the relative strength of product-specific factors in fuel switching and stove choice decisions in Ethiopia. A discrete choice model of household preferences for clean cooking alternatives," Energy Economics, Elsevier, vol. 34(6), pages 1763-1773.
    6. Rahut, Dil Bahadur & Das, Sukanya & De Groote, Hugo & Behera, Bhagirath, 2014. "Determinants of household energy use in Bhutan," Energy, Elsevier, vol. 69(C), pages 661-672.
    7. Lee, Soo Min & Kim, Yeon-Su & Jaung, Wanggi & Latifah, Sitti & Afifi, Mansur & Fisher, Larry A., 2015. "Forests, fuelwood and livelihoods—energy transition patterns in eastern Indonesia," Energy Policy, Elsevier, vol. 85(C), pages 61-70.
    8. Mensah, Justice Tei & Adu, George, 2015. "An empirical analysis of household energy choice in Ghana," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1402-1411.
    9. Bielecki, Christopher & Wingenbach, Gary, 2014. "Rethinking improved cookstove diffusion programs: A case study of social perceptions and cooking choices in rural Guatemala," Energy Policy, Elsevier, vol. 66(C), pages 350-358.
    10. Han, Hongyun & Wu, Shu, 2018. "Rural residential energy transition and energy consumption intensity in China," Energy Economics, Elsevier, vol. 74(C), pages 523-534.
    11. Calzada, Joan & Sanz, Alex, 2018. "Universal access to clean cookstoves: Evaluation of a public program in Peru," Energy Policy, Elsevier, vol. 118(C), pages 559-572.
    12. MacCarty, Nordica A. & Bryden, Kenneth Mark, 2016. "An integrated systems model for energy services in rural developing communities," Energy, Elsevier, vol. 113(C), pages 536-557.
    13. Ahmed Moustapha Mfokeu & Elie Virgile Chrysostome & Jean-Pierre Gueyie & Olivier Ebenezer Mun Ngapna, 2023. "Consumer Motivation behind the Use of Ecological Charcoal in Cameroon," Sustainability, MDPI, vol. 15(3), pages 1-22, January.
    14. Rahut, Dil Bahadur & Behera, Bhagirath & Ali, Akhter, 2016. "Patterns and determinants of household use of fuels for cooking: Empirical evidence from sub-Saharan Africa," Energy, Elsevier, vol. 117(P1), pages 93-104.
    15. Andadari, Roos Kities & Mulder, Peter & Rietveld, Piet, 2014. "Energy poverty reduction by fuel switching. Impact evaluation of the LPG conversion program in Indonesia," Energy Policy, Elsevier, vol. 66(C), pages 436-449.
    16. van der Kroon, Bianca & Brouwer, Roy & van Beukering, Pieter J.H., 2014. "The impact of the household decision environment on fuel choice behavior," Energy Economics, Elsevier, vol. 44(C), pages 236-247.
    17. Lay, Jann & Ondraczek, Janosch & Stoever, Jana, 2013. "Renewables in the energy transition: Evidence on solar home systems and lighting fuel choice in Kenya," Energy Economics, Elsevier, vol. 40(C), pages 350-359.
    18. Wang, Qiang & Kwan, Mei-Po & Zhou, Kan & Fan, Jie & Wang, Yafei & Zhan, Dongsheng, 2019. "Impacts of residential energy consumption on the health burden of household air pollution: Evidence from 135 countries," Energy Policy, Elsevier, vol. 128(C), pages 284-295.
    19. Cheng, Chao-yo & Urpelainen, Johannes, 2014. "Fuel stacking in India: Changes in the cooking and lighting mix, 1987–2010," Energy, Elsevier, vol. 76(C), pages 306-317.
    20. Wassie, Yibeltal T. & Rannestad, Meley M. & Adaramola, Muyiwa S., 2021. "Determinants of household energy choices in rural sub-Saharan Africa: An example from southern Ethiopia," Energy, Elsevier, vol. 221(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:39:y:2011:i:12:p:7557-7566. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.