IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/16344.html
   My bibliography  Save this paper

Analysis of Innovation and Energy Profiles in the Turkish Manufacturing Sector

Author

Listed:
  • Okay, Nesrin
  • Konukman, Alp Er S.
  • Akman, Ugur

Abstract

We present Turkey’s manufacturing-sector innovation data and, for the first time, analyze likely relationships among GDP growth, sectoral innovation intensities, energy consumptions, and energy-saving potentials. We detect a power-law-like relationship between the projected energy-saving potentials and realized energy consumptions of the manufacturing-sector groups. We observe that the energy consumptions of the sectors do not change significantly despite varying innovation levels during transitions from economic crisis and recovery periods. We conclude that the Turkey’s manufacturing sectors’ energy consumptions are insensitive to their innovation levels, or their innovation activities are not energy-efficiency- and energy-saving-oriented, reflecting Turkey’s past supply-oriented energy policy. The leader innovating sectors are, nevertheless, expected to contribute more to Turkey’s energy-saving and energyefficiency policies if their innovation potentials can be directed to achieve higher energy savings and energy efficiencies via government incentives within the agenda of the recent energy-efficiency and R&D laws.

Suggested Citation

  • Okay, Nesrin & Konukman, Alp Er S. & Akman, Ugur, 2009. "Analysis of Innovation and Energy Profiles in the Turkish Manufacturing Sector," MPRA Paper 16344, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:16344
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/16344/1/MPRA_paper_16344.pdf
    File Function: original version
    Download Restriction: no

    File URL: https://mpra.ub.uni-muenchen.de/16779/1/MPRA_paper_16779.pdf
    File Function: revised version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Foxon, T. J. & Gross, R. & Chase, A. & Howes, J. & Arnall, A. & Anderson, D., 2005. "UK innovation systems for new and renewable energy technologies: drivers, barriers and systems failures," Energy Policy, Elsevier, vol. 33(16), pages 2123-2137, November.
    2. Ipek Tunç, G. & Türüt-AsIk, Serap & AkbostancI, Elif, 2009. "A decomposition analysis of CO2 emissions from energy use: Turkish case," Energy Policy, Elsevier, vol. 37(11), pages 4689-4699, November.
    3. Peter Nijkamp, Caroline A. Rodenburg, Erik T. Verhoef, 2001. "The adoption and diffusion of environmentally friendly technologies among firms," International Journal of Environmental Technology and Management, Inderscience Enterprises Ltd, vol. 1(1/2), pages 87-103.
    4. Popp, David C., 2001. "The effect of new technology on energy consumption," Resource and Energy Economics, Elsevier, vol. 23(3), pages 215-239, July.
    5. Thomas Sterner, 1990. "Energy Efficiency and Capital Embodied Technical Change: The Case of Mexican Cement Manufacturing," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 155-167.
    6. Hekkert, Marko P. & Harmsen, Robert & de Jong, Arjen, 2007. "Explaining the rapid diffusion of Dutch cogeneration by innovation system functioning," Energy Policy, Elsevier, vol. 35(9), pages 4677-4687, September.
    7. Sagar, A. D. & Holdren, J. P., 2002. "Assessing the global energy innovation system: some key issues," Energy Policy, Elsevier, vol. 30(6), pages 465-469, May.
    8. Richard G. Newell & Adam B. Jaffe & Robert N. Stavins, 1999. "The Induced Innovation Hypothesis and Energy-Saving Technological Change," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 114(3), pages 941-975.
    9. Anderson, Soren T. & Newell, Richard G., 2004. "Information programs for technology adoption: the case of energy-efficiency audits," Resource and Energy Economics, Elsevier, vol. 26(1), pages 27-50, March.
    10. Ernst Berndt & Charles Kolstad & Jong-Kun Lee, 1993. "Measuring the Energy Efficiency and Productivity Impacts of Embodied Technical Change," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 33-56.
    11. Mulder, Peter & de Groot, Henri L. F. & Hofkes, Marjan W., 2003. "Explaining slow diffusion of energy-saving technologies; a vintage model with returns to diversity and learning-by-using," Resource and Energy Economics, Elsevier, vol. 25(1), pages 105-126, February.
    12. Beerepoot, Milou & Beerepoot, Niels, 2007. "Government regulation as an impetus for innovation: Evidence from energy performance regulation in the Dutch residential building sector," Energy Policy, Elsevier, vol. 35(10), pages 4812-4825, October.
    13. Okay, Esin & Okay, Nesrin & Konukman, Alp Er S. & Akman, Ugur, 2008. "Views on Turkey's impending ESCO market: Is it promising?," Energy Policy, Elsevier, vol. 36(6), pages 1821-1825, June.
    14. Dean C. Mountain & Bill P. Stipdonk & Cathy J. Warren, 1989. "Technological Innovation and a Changing Energy Mix - A Parametric and Flexible Approach to Modeling Ontario Manufacturing," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 139-158.
    15. Soytas, Ugur & Sari, Ramazan, 2007. "The relationship between energy and production: Evidence from Turkish manufacturing industry," Energy Economics, Elsevier, vol. 29(6), pages 1151-1165, November.
    16. Soytas, Ugur & Sari, Ramazan, 2009. "Energy consumption, economic growth, and carbon emissions: Challenges faced by an EU candidate member," Ecological Economics, Elsevier, vol. 68(6), pages 1667-1675, April.
    17. David Popp, 2002. "Induced Innovation and Energy Prices," American Economic Review, American Economic Association, vol. 92(1), pages 160-180, March.
    18. Sue Wing, Ian, 2008. "Explaining the declining energy intensity of the U.S. economy," Resource and Energy Economics, Elsevier, vol. 30(1), pages 21-49, January.
    19. Oikonomou, V. & Becchis, F. & Steg, L. & Russolillo, D., 2009. "Energy saving and energy efficiency concepts for policy making," Energy Policy, Elsevier, vol. 37(11), pages 4787-4796, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Okay, Nesrin & Akman, Ugur, 2010. "Analysis of ESCO activities using country indicators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2760-2771, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Okay, Nesrin & Akman, Ugur, 2010. "Analysis of ESCO activities using country indicators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2760-2771, December.
    2. Popp, David & Newell, Richard G. & Jaffe, Adam B., 2010. "Energy, the Environment, and Technological Change," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 873-937, Elsevier.
    3. David Popp, 2003. "Lessons from Patents: Using Patents To Measure Technological Change in Environmental Models," NBER Working Papers 9978, National Bureau of Economic Research, Inc.
    4. Popp, David, 2005. "Lessons from patents: Using patents to measure technological change in environmental models," Ecological Economics, Elsevier, vol. 54(2-3), pages 209-226, August.
    5. Gillingham, Kenneth & Newell, Richard G. & Pizer, William A., 2008. "Modeling endogenous technological change for climate policy analysis," Energy Economics, Elsevier, vol. 30(6), pages 2734-2753, November.
    6. Amann, Juergen & Cantore, Nicola & Calí, Massimiliano & Todorov, Valentin & Cheng, Charles Fang Chin, 2021. "Switching it up: The effect of energy price reforms in Oman," World Development, Elsevier, vol. 142(C).
    7. Steinbuks, Jevgenijs & Neuhoff, Karsten, 2014. "Assessing energy price induced improvements in efficiency of capital in OECD manufacturing industries," Journal of Environmental Economics and Management, Elsevier, vol. 68(2), pages 340-356.
    8. Stavins, Robert & Jaffe, Adam & Newell, Richard, 2000. "Technological Change and the Environment," Working Paper Series rwp00-002, Harvard University, John F. Kennedy School of Government.
    9. Kurt Kratena & Michael Wüger, 2012. "Technological Change and Energy Demand in Europe," WIFO Working Papers 427, WIFO.
    10. Henriksson, Eva & Söderholm, Patrik & Wårell, Linda, 2012. "Industrial electricity demand and energy efficiency policy: The role of price changes and private R&D in the Swedish pulp and paper industry," Energy Policy, Elsevier, vol. 47(C), pages 437-446.
    11. Wurlod, Jules-Daniel & Noailly, Joëlle, 2018. "The impact of green innovation on energy intensity: An empirical analysis for 14 industrial sectors in OECD countries," Energy Economics, Elsevier, vol. 71(C), pages 47-61.
    12. Alexander Melnik & Irina Naoumova & Kirill Ermolaev & Jerome Katrichis, 2021. "Driving Innovation through Energy Efficiency: A Russian Regional Analysis," Sustainability, MDPI, vol. 13(9), pages 1-19, April.
    13. Joshua Linn, 2008. "Energy Prices and the Adoption of Energy‐Saving Technology," Economic Journal, Royal Economic Society, vol. 118(533), pages 1986-2012, November.
    14. David I. Stern, 2010. "The Role of Energy in Economic Growth," CCEP Working Papers 0310, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
    15. Jaffe, Adam B. & Newell, Richard G. & Stavins, Robert N., 2003. "Chapter 11 Technological change and the environment," Handbook of Environmental Economics, in: K. G. Mäler & J. R. Vincent (ed.), Handbook of Environmental Economics, edition 1, volume 1, chapter 11, pages 461-516, Elsevier.
    16. Popp, David C., 2001. "The effect of new technology on energy consumption," Resource and Energy Economics, Elsevier, vol. 23(3), pages 215-239, July.
    17. Zhu, Junming & Niu, Limin & Ruth, Matthias & Shi, Lei, 2018. "Technological Change and Energy Efficiency in Large Chinese Firms," Ecological Economics, Elsevier, vol. 150(C), pages 241-250.
    18. Zhangsheng Liu & Liuqingqing Yang & Liqin Fan, 2021. "Induced Effect of Environmental Regulation on Green Innovation: Evidence from the Increasing-Block Pricing Scheme," IJERPH, MDPI, vol. 18(5), pages 1-15, March.
    19. Kristoffer Palage & Robert Lundmark & Patrik Söderholm, 2019. "The innovation effects of renewable energy policies and their interaction: the case of solar photovoltaics," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 21(2), pages 217-254, April.
    20. del Río González, Pablo, 2009. "The empirical analysis of the determinants for environmental technological change: A research agenda," Ecological Economics, Elsevier, vol. 68(3), pages 861-878, January.

    More about this item

    Keywords

    Manufacturing sector; Innovation; Energy consumption; Energy saving potential; Energy efficiency; R&D; GDP; Turkey;
    All these keywords.

    JEL classification:

    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
    • Q55 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Technological Innovation
    • L52 - Industrial Organization - - Regulation and Industrial Policy - - - Industrial Policy; Sectoral Planning Methods
    • O3 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy
    • L60 - Industrial Organization - - Industry Studies: Manufacturing - - - General
    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:16344. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.