IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!)

Citations for "Predicting volatility: getting the most out of return data sampled at different frequencies"

by Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen

For a complete description of this item, click here. For a RSS feed for citations of this item, click here.
as
in new window


  1. Etienne, Xiaoli L., 2015. "Financialization of Agricultural Commodity Markets: Do Financial Data Help to Forecast Agricultural Prices?," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205124, Agricultural and Applied Economics Association;Western Agricultural Economics Association.
  2. Nielsen, Morten Ørregaard & Frederiksen, Per, 2008. "Finite sample accuracy and choice of sampling frequency in integrated volatility estimation," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 265-286, March.
  3. Louzis, Dimitrios P. & Xanthopoulos-Sisinis, Spyros & Refenes, Apostolos P., 2011. "Are realized volatility models good candidates for alternative Value at Risk prediction strategies?," MPRA Paper 30364, University Library of Munich, Germany.
  4. Georgiana-Denisa Banulescu & Bertrand Candelon & Christophe Hurlin & Sébastien Laurent, 2014. "Do We Need Ultra-High Frequency Data to Forecast Variances?," Working Papers halshs-01078158, HAL.
  5. Neil Shephard & Ole E. Barndorff-Nielsen, 2005. "Variation, jumps, market frictions and high frequency data in financial econometrics," Economics Series Working Papers 240, University of Oxford, Department of Economics.
  6. Ghysels, Eric & Ozkan, Nazire, 2015. "Real-time forecasting of the US federal government budget: A simple mixed frequency data regression approach," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1009-1020.
  7. Krüger Fabian & Pohlmeier Winfried & Mokinski Frieder, 2011. "Combining Survey Forecasts and Time Series Models: The Case of the Euribor," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 231(1), pages 63-81, February.
  8. repec:lan:wpaper:3046 is not listed on IDEAS
  9. Chaboud, Alain P. & Chiquoine, Benjamin & Hjalmarsson, Erik & Loretan, Mico, 2010. "Frequency of observation and the estimation of integrated volatility in deep and liquid financial markets," Journal of Empirical Finance, Elsevier, vol. 17(2), pages 212-240, March.
  10. Xilong Chen & Eric Ghysels, 2011. "News--Good or Bad--and Its Impact on Volatility Predictions over Multiple Horizons," Review of Financial Studies, Society for Financial Studies, vol. 24(1), pages 46-81, October.
  11. Elena Andreou & Eric Ghysels & Andros Kourtellos, 2013. "Should Macroeconomic Forecasters Use Daily Financial Data and How?," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(2), pages 240-251, April.
  12. Nikolaus Hautsch & Lada M. Kyj & Peter Malec, 2015. "Do High‐Frequency Data Improve High‐Dimensional Portfolio Allocations?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(2), pages 263-290, 03.
  13. Lucia Alessi & Eric Ghysels & Luca Onorante & Richard Peach & Simon Potter, 2014. "Central Bank Macroeconomic Forecasting During the Global Financial Crisis: The European Central Bank and Federal Reserve Bank of New York Experiences," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(4), pages 483-500, October.
  14. Foroni, Claudia & Marcellino, Massimiliano & Schumacher, Christian, 2011. "U-MIDAS: MIDAS regressions with unrestricted lag polynomials," Discussion Paper Series 1: Economic Studies 2011,35, Deutsche Bundesbank, Research Centre.
  15. Hooper, Vincent J. & Ng, Kevin & Reeves, Jonathan J., 2008. "Quarterly beta forecasting: An evaluation," International Journal of Forecasting, Elsevier, vol. 24(3), pages 480-489.
  16. Christopher F. Baum & Mustafa Caglayan & Oleksandr Talavera, 2010. "On the sensitivity of firms' investment to cash flow and uncertainty," Oxford Economic Papers, Oxford University Press, vol. 62(2), pages 286-306, April.
  17. Golosnoy, Vasyl & Hamid, Alain & Okhrin, Yarema, 2014. "The empirical similarity approach for volatility prediction," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 321-329.
  18. Wolfgang Härdle & Julius Mungo, 2007. "Long Memory Persistence in the Factor of Implied Volatility Dynamics," SFB 649 Discussion Papers SFB649DP2007-027, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  19. Drew Creal & Bernd Schwaab & Siem Jan Koopman & Andr� Lucas, 2014. "Observation-Driven Mixed-Measurement Dynamic Factor Models with an Application to Credit Risk," The Review of Economics and Statistics, MIT Press, vol. 96(5), pages 898-915, December.
  20. Cecilia Frale & Libero Monteforte, "undated". "FaMIDAS: A Mixed Frequency Factor Model with MIDAS structure," Working Papers 3, Department of the Treasury, Ministry of the Economy and of Finance.
  21. Götz, Thomas B. & Hecq, Alain & Smeekes, Stephan, 2016. "Testing for Granger causality in large mixed-frequency VARs," Journal of Econometrics, Elsevier, vol. 193(2), pages 418-432.
  22. Dimitrios P. Louzis & Spyros Xanthopoulos‐Sisinis & Apostolos P. Refenes, 2013. "The Role of High‐Frequency Intra‐daily Data, Daily Range and Implied Volatility in Multi‐period Value‐at‐Risk Forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(6), pages 561-576, 09.
  23. Hanan Naser, 2015. "Estimating and forecasting Bahrain quarterly GDP growth using simple regression and factor-based methods," Empirical Economics, Springer, vol. 49(2), pages 449-479, September.
  24. Bräuning, Falk & Koopman, Siem Jan, 2014. "Forecasting macroeconomic variables using collapsed dynamic factor analysis," International Journal of Forecasting, Elsevier, vol. 30(3), pages 572-584.
  25. C. Emre Alper & Salih Fendoglu & Burak Saltoglu, 2009. "MIDAS Volatility Forecast Performance Under Market Stress: Evidence from Emerging and Developed Stock Markets," Working Papers 2009/04, Bogazici University, Department of Economics.
  26. Dewandaru, Ginanjar & Masih, Rumi & Bacha, Obiyathulla Ismath & Masih, A. Mansur. M., 2015. "Combining momentum, value, and quality for the Islamic equity portfolio: Multi-style rotation strategies using augmented Black Litterman factor model," Pacific-Basin Finance Journal, Elsevier, vol. 34(C), pages 205-232.
  27. Gregory H. Bauer & Keith Vorkink, 2007. "Multivariate Realized Stock Market Volatility," Staff Working Papers 07-20, Bank of Canada.
  28. Cláudia Duarte, 2015. "Covariate-augmented unit root tests with mixed-frequency data," Working Papers w201507, Banco de Portugal, Economics and Research Department.
  29. Francis X. Diebold & Kamil Yılmaz, 2007. "Macroeconomic Volatility and Stock Market Volatility,World-Wide," Koç University-TUSIAD Economic Research Forum Working Papers 0711, Koc University-TUSIAD Economic Research Forum.
  30. Nikolaus Hautsch & Fuyu Yang, 2014. "Bayesian Stochastic Search for the Best Predictors: Nowcasting GDP Growth," University of East Anglia Applied and Financial Economics Working Paper Series 056, School of Economics, University of East Anglia, Norwich, UK..
  31. Amir Safari & Detlef Seese, 2010. "Behavior of realized volatility and correlation in exchange markets," International Econometric Review (IER), Econometric Research Association, vol. 2(2), pages 73-96, September.
  32. Michael P. Clements & Ana Beatriz Galvão, 2014. "Measuring Macroeconomic Uncertainty: US Inflation and Output Growth," ICMA Centre Discussion Papers in Finance icma-dp2014-04, Henley Business School, Reading University.
  33. Barndorff-Nielsen, Ole E. & Graversen, Svend Erik & Jacod, Jean & Shephard, Neil, 2006. "Limit Theorems For Bipower Variation In Financial Econometrics," Econometric Theory, Cambridge University Press, vol. 22(04), pages 677-719, August.
  34. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2005. "There is a risk-return trade-off after all," Journal of Financial Economics, Elsevier, vol. 76(3), pages 509-548, June.
  35. Anthony S. Tay, 2006. "Mixing Frequencies : Stock Returns as a Predictor of Real Output Growth," Macroeconomics Working Papers 22480, East Asian Bureau of Economic Research.
  36. Ralf Becker & Adam Clements, 2007. "Forecasting stock market volatility conditional on macroeconomic conditions," NCER Working Paper Series 18, National Centre for Econometric Research.
  37. Fengler, Matthias R. & Okhrin, Ostap, 2016. "Managing risk with a realized copula parameter," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 131-152.
  38. Asai, Manabu & Brugal, Ivan, 2013. "Forecasting volatility via stock return, range, trading volume and spillover effects: The case of Brazil," The North American Journal of Economics and Finance, Elsevier, vol. 25(C), pages 202-213.
  39. Claudia Foroni & Massimiliano Marcellino, 2013. "A survey of econometric methods for mixed-frequency data," Economics Working Papers ECO2013/02, European University Institute.
  40. Torben G. Andersen & Tim Bollerslev & Peter Christoffersen & Francis X. Diebold, 2007. "Practical Volatility and Correlation Modeling for Financial Market Risk Management," NBER Chapters, in: The Risks of Financial Institutions, pages 513-548 National Bureau of Economic Research, Inc.
  41. Becker, Ralf & Clements, Adam E. & White, Scott I., 2007. "Does implied volatility provide any information beyond that captured in model-based volatility forecasts?," Journal of Banking & Finance, Elsevier, vol. 31(8), pages 2535-2549, August.
  42. Henker, Thomas & Husodo, Zaäfri A., 2010. "Noise and efficient variance in the Indonesia Stock Exchange," Pacific-Basin Finance Journal, Elsevier, vol. 18(2), pages 199-216, April.
  43. Andreou, Elena, 2016. "On the use of high frequency measures of volatility in MIDAS regressions," CEPR Discussion Papers 11307, C.E.P.R. Discussion Papers.
  44. Clements, Michael P. & Galvão, Ana Beatriz & Kim, Jae H., 2008. "Quantile forecasts of daily exchange rate returns from forecasts of realized volatility," Journal of Empirical Finance, Elsevier, vol. 15(4), pages 729-750, September.
  45. Audrino, Francesco, 2014. "Forecasting correlations during the late-2000s financial crisis: The short-run component, the long-run component, and structural breaks," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 43-60.
  46. Audrino, Francesco, 2011. "Forecasting correlations during the late-2000s financial crisis: short-run component, long-run component, and structural breaks," Economics Working Paper Series 1112, University of St. Gallen, School of Economics and Political Science.
  47. Qu, Hui & Chen, Wei & Niu, Mengyi & Li, Xindan, 2016. "Forecasting realized volatility in electricity markets using logistic smooth transition heterogeneous autoregressive models," Energy Economics, Elsevier, vol. 54(C), pages 68-76.
  48. Foroni, Claudia & Marcellino, Massimiliano, 2014. "A comparison of mixed frequency approaches for nowcasting Euro area macroeconomic aggregates," International Journal of Forecasting, Elsevier, vol. 30(3), pages 554-568.
  49. Jonathan J. Reeves & Xuan Xie, 2014. "Forecasting stock return volatility at the quarterly frequency: an evaluation of time series approaches," Applied Financial Economics, Taylor & Francis Journals, vol. 24(5), pages 347-356, March.
  50. Clements, Michael P & Galvão, Ana Beatriz, 2006. "Macroeconomic Forecasting with Mixed Frequency Data : Forecasting US output growth and inflation," The Warwick Economics Research Paper Series (TWERPS) 773, University of Warwick, Department of Economics.
  51. Cheng, Ai-Ru & Jahan-Parvar, Mohammad R., 2014. "Risk–return trade-off in the pacific basin equity markets," Emerging Markets Review, Elsevier, vol. 18(C), pages 123-140.
  52. Bandi, Federico M. & Russell, Jeffrey R. & Yang, Chen, 2008. "Realized volatility forecasting and option pricing," Journal of Econometrics, Elsevier, vol. 147(1), pages 34-46, November.
  53. Cláudia Duarte, 2014. "Autoregressive augmentation of MIDAS regressions," Working Papers w201401, Banco de Portugal, Economics and Research Department.
  54. Douglas G. Santos & Flavio A. Ziegelmann, 2014. "Volatility Forecasting via MIDAS, HAR and their Combination: An Empirical Comparative Study for IBOVESPA," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(4), pages 284-299, 07.
  55. Ghysels, Eric & Guérin, Pierre & Marcellino, Massimiliano, 2014. "Regime switches in the risk–return trade-off," Journal of Empirical Finance, Elsevier, vol. 28(C), pages 118-138.
  56. Emre Alper, C. & Fendoglu, Salih & Saltoglu, Burak, 2012. "MIDAS volatility forecast performance under market stress: Evidence from emerging stock markets," Economics Letters, Elsevier, vol. 117(2), pages 528-532.
  57. Duarte, Cláudia & Rodrigues, Paulo M.M. & Rua, António, 2017. "A mixed frequency approach to the forecasting of private consumption with ATM/POS data," International Journal of Forecasting, Elsevier, vol. 33(1), pages 61-75.
  58. Ghysels, Eric & Sinko, Arthur, 2011. "Volatility forecasting and microstructure noise," Journal of Econometrics, Elsevier, vol. 160(1), pages 257-271, January.
  59. Baur, Dirk G. & Dimpfl, Thomas, 2016. "Googling gold and mining bad news," Resources Policy, Elsevier, vol. 50(C), pages 306-311.
  60. Claudia FORONI & Massimiliano MARCELLINO, 2012. "A Comparison of Mixed Frequency Approaches for Modelling Euro Area Macroeconomic Variables," Economics Working Papers ECO2012/07, European University Institute.
  61. Chun Liu & John M. Maheu, 2008. "Are There Structural Breaks in Realized Volatility?," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 6(3), pages 326-360, Summer.
  62. Anthony S. Tay, 2007. "Financial Variables as Predictors of Real Output Growth," Development Economics Working Papers 22482, East Asian Bureau of Economic Research.
  63. Corsi, Fulvio & Pirino, Davide & Renò, Roberto, 2010. "Threshold bipower variation and the impact of jumps on volatility forecasting," Journal of Econometrics, Elsevier, vol. 159(2), pages 276-288, December.
  64. Maheu, John M. & McCurdy, Thomas H., 2011. "Do high-frequency measures of volatility improve forecasts of return distributions?," Journal of Econometrics, Elsevier, vol. 160(1), pages 69-76, January.
  65. Tian, Fengping & Yang, Ke & Chen, Langnan, 2017. "Realized volatility forecasting of agricultural commodity futures using the HAR model with time-varying sparsity," International Journal of Forecasting, Elsevier, vol. 33(1), pages 132-152.
  66. Manabu Asai, 2013. "Heterogeneous Asymmetric Dynamic Conditional Correlation Model with Stock Return and Range," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(5), pages 469-480, 08.
  67. Andrew J. Patton & Tarun Ramadorai, 2013. "On the High-Frequency Dynamics of Hedge Fund Risk Exposures," Journal of Finance, American Finance Association, vol. 68(2), pages 597-635, 04.
  68. Andersen, Torben G. & Bollerslev, Tim & Meddahi, Nour, 2011. "Realized volatility forecasting and market microstructure noise," Journal of Econometrics, Elsevier, vol. 160(1), pages 220-234, January.
  69. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 7(2), pages 174-196, Spring.
  70. Alper, C. Emre & Fendoglu, Salih & Saltoglu, Burak, 2008. "Forecasting Stock Market Volatilities Using MIDAS Regressions: An Application to the Emerging Markets," MPRA Paper 7460, University Library of Munich, Germany.
  71. El-Shagi, Makram, 2016. "Much ado about nothing: Sovereign ratings and government bond yields in the OECD," IWH Discussion Papers 22/2016, Halle Institute for Economic Research (IWH).
  72. Leon, Angel & Nave, Juan M. & Rubio, Gonzalo, 2007. "The relationship between risk and expected return in Europe," Journal of Banking & Finance, Elsevier, vol. 31(2), pages 495-512, February.
  73. J. Isaac Miller, 2014. "Mixed-frequency Cointegrating Regressions with Parsimonious Distributed Lag Structures," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 12(3), pages 584-614.
  74. Anderson, Evan W. & Ghysels, Eric & Juergens, Jennifer L., 2009. "The impact of risk and uncertainty on expected returns," Journal of Financial Economics, Elsevier, vol. 94(2), pages 233-263, November.
  75. Michael McAleer & Marcelo Medeiros, 2008. "Realized Volatility: A Review," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 10-45.
  76. Baele, Lieven & Londono, Juan M., 2013. "Understanding industry betas," Journal of Empirical Finance, Elsevier, vol. 22(C), pages 30-51.
  77. Subbotin, Alexandre, 2009. "Volatility Models: from Conditional Heteroscedasticity to Cascades at Multiple Horizons," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 15(3), pages 94-138.
  78. Hwang, Eunju & Shin, Dong Wan, 2014. "Infinite-order, long-memory heterogeneous autoregressive models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 339-358.
  79. Sucarrat, Genaro & Grønneberg, Steffen, 2016. "Models of Financial Return With Time-Varying Zero Probability," MPRA Paper 68931, University Library of Munich, Germany.
  80. repec:lan:wpaper:3324 is not listed on IDEAS
  81. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2003. "Some Like it Smooth, and Some Like it Rough: Untangling Continuous and Jump Components in Measuring, Modeling, and Forecasting Asset Return Volatility," PIER Working Paper Archive 03-025, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 01 Sep 2003.
  82. Gopal K. Basak & Ravi Jagannathan & Tongshu Ma, 2004. "A Jackknife Estimator for Tracking Error Variance of Optimal Portfolios Constructed Using Estimated Inputs1," NBER Working Papers 10447, National Bureau of Economic Research, Inc.
  83. Torben G. Andersen & Viktor Todorov, 2009. "Realized Volatility and Multipower Variation," CREATES Research Papers 2009-49, Department of Economics and Business Economics, Aarhus University.
  84. Kambouroudis, Dimos S. & McMillan, David G., 2015. "Is there an ideal in-sample length for forecasting volatility?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 37(C), pages 114-137.
  85. Peter Christoffersen & Stefano Mazzotta, 2004. "The Informational Content of Over-the-Counter Currency Options," CIRANO Working Papers 2004s-16, CIRANO.
  86. Chevallier, Julien, 2011. "Evaluating the carbon-macroeconomy relationship: Evidence from threshold vector error-correction and Markov-switching VAR models," Economic Modelling, Elsevier, vol. 28(6), pages 2634-2656.
  87. Robert Kunst & Philip Franses, 2015. "Asymmetric time aggregation and its potential benefits for forecasting annual data," Empirical Economics, Springer, vol. 49(1), pages 363-387, August.
  88. Fuertes, Ana-Maria & Izzeldin, Marwan & Kalotychou, Elena, 2009. "On forecasting daily stock volatility: The role of intraday information and market conditions," International Journal of Forecasting, Elsevier, vol. 25(2), pages 259-281.
  89. Qian, Hang, 2013. "Vector Autoregression with Mixed Frequency Data," MPRA Paper 47856, University Library of Munich, Germany.
  90. Andreou, Elena & Ghysels, Eric, 2006. "Monitoring disruptions in financial markets," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 77-124.
  91. Stefano Grassi & Nima Nonejad & Paolo Santucci de Magistris, 2014. "Forecasting with the Standardized Self-Perturbed Kalman Filter," Studies in Economics 1405, School of Economics, University of Kent.
  92. Herwartz, Helmut & Golosnoy, Vasyl, 2007. "Semiparametric Approaches to the Prediction of Conditional Correlation Matrices in Finance," Economics Working Papers 2007,23, Christian-Albrechts-University of Kiel, Department of Economics.
  93. Gopal K. Basak & Ravi Jagannathan & Tongshu Ma, 2009. "Jackknife Estimator for Tracking Error Variance of Optimal Portfolios," Management Science, INFORMS, vol. 55(6), pages 990-1002, June.
  94. León Valle Ángel & Nave Pineda Juan & Rubio Irigoyen Gonzalo, 2005. "The Relationship between Risk and Expected Return in Europe," Working Papers 201025, Fundacion BBVA / BBVA Foundation.
  95. Tseng Tseng-Chan & Chung Huimin & Huang Chin-Sheng, 2009. "Modeling Jump and Continuous Components in the Volatility of Oil Futures," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 13(3), pages 1-30, May.
  96. Ojogho, Osaihiomwan & Egware, Robert Awotu, 4. "Price Generating Process And Volatility In Nigerian Agricultural Commodities Market," International Journal of Food and Agricultural Economics (IJFAEC), Alanya Alaaddin Keykubat University, Department of Economics and Finance, vol. 3(4).
  97. Golosnoy, Vasyl & Gribisch, Bastian & Liesenfeld, Roman, 2012. "The conditional autoregressive Wishart model for multivariate stock market volatility," Journal of Econometrics, Elsevier, vol. 167(1), pages 211-223.
  98. Michelle T. Armesto & Kristie M. Engemann & Michael T. Owyang, 2010. "Forecasting with mixed frequencies," Review, Federal Reserve Bank of St. Louis, issue Nov, pages 521-536.
  99. Yongheng Deng & Eric Girardin & Roselyne Joyeux, 2015. "Fundamentals and the Volatility of Real Estate Prices in China: A Sequential Modelling Strategy," Working Papers 222015, Hong Kong Institute for Monetary Research.
  100. Elena Andreou, 2016. "On the use of high frequency measures of volatility in MIDAS regressions," University of Cyprus Working Papers in Economics 03-2016, University of Cyprus Department of Economics.
  101. Liu, Xinyi & Margaritis, Dimitris & Wang, Peiming, 2012. "Stock market volatility and equity returns: Evidence from a two-state Markov-switching model with regressors," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 483-496.
  102. Dimitra Lamprou, 2015. "Nowcasting GDP in Greece: A Note on Forecasting Improvements from the Use of Bridge Models," South-Eastern Europe Journal of Economics, Association of Economic Universities of South and Eastern Europe and the Black Sea Region, vol. 13(1), pages 85-100.
  103. Talavera, Oleksandr & Tsapin, Andriy & Zholud, Oleksandr, 2012. "Macroeconomic uncertainty and bank lending: The case of Ukraine," Economic Systems, Elsevier, vol. 36(2), pages 279-293.
  104. Marcel P. Visser, 2011. "GARCH Parameter Estimation Using High-Frequency Data," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 9(1), pages 162-197, Winter.
  105. Wong, Wing-Keung & McAleer, Michael, 2009. "Mapping the Presidential Election Cycle in US stock markets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(11), pages 3267-3277.
  106. Rodriguez, Abel & Puggioni, Gavino, 2010. "Mixed frequency models: Bayesian approaches to estimation and prediction," International Journal of Forecasting, Elsevier, vol. 26(2), pages 293-311, April.
  107. Hamid, Alain & Heiden, Moritz, 2015. "Forecasting volatility with empirical similarity and Google Trends," Journal of Economic Behavior & Organization, Elsevier, vol. 117(C), pages 62-81.
  108. Chan-Guk Huh & Jie Wu, 2015. "Linkage between US monetary policy and emerging economies: the case of Korea?s financial market and monetary policy," International Journal of Economic Sciences, International Institute of Social and Economic Sciences, vol. 4(3), pages 1-18, September.
  109. Kuzin, Vladimir & Marcellino, Massimiliano & Schumacher, Christian, 2011. "MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the euro area," International Journal of Forecasting, Elsevier, vol. 27(2), pages 529-542.
  110. Wang, Jianxin & Yang, Minxian, 2009. "Asymmetric volatility in the foreign exchange markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 19(4), pages 597-615, October.
  111. Anindya Biswas, 2015. "The output gap and inflation in U.S. data: an empirical note," Economics Bulletin, AccessEcon, vol. 35(2), pages 841-845.
  112. Pierre Guérin & Massimiliano Marcellino, 2013. "Markov-Switching MIDAS Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 45-56, January.
  113. Seo, Sung Won & Kim, Jun Sik, 2015. "The information content of option-implied information for volatility forecasting with investor sentiment," Journal of Banking & Finance, Elsevier, vol. 50(C), pages 106-120.
  114. Bauer, Gregory H. & Vorkink, Keith, 2011. "Forecasting multivariate realized stock market volatility," Journal of Econometrics, Elsevier, vol. 160(1), pages 93-101, January.
  115. Michael P. Clements & Ana Beatriz Galvao, 2009. "Forecasting US output growth using leading indicators: an appraisal using MIDAS models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(7), pages 1187-1206.
  116. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
  117. Pedregal, Diego J. & Pérez, Javier J., 2010. "Should quarterly government finance statistics be used for fiscal surveillance in Europe?," International Journal of Forecasting, Elsevier, vol. 26(4), pages 794-807, October.
  118. Matthias R. Fengler & Ostap Okhrin, 2012. "Realized Copula," SFB 649 Discussion Papers SFB649DP2012-034, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  119. Tony Chernis & Rodrigo Sekkel, 2017. "A Dynamic Factor Model for Nowcasting Canadian GDP Growth," Staff Working Papers 17-2, Bank of Canada.
  120. Bandi, Federico M. & Russell, Jeffrey R., 2011. "Market microstructure noise, integrated variance estimators, and the accuracy of asymptotic approximations," Journal of Econometrics, Elsevier, vol. 160(1), pages 145-159, January.
  121. Isao Ishida & Virmantas Kvedaras, 2015. "Modeling Autoregressive Processes with Moving-Quantiles-Implied Nonlinearity," Econometrics, MDPI, Open Access Journal, vol. 3(1), pages 1-53, January.
  122. Emiliano Magrini & Ayca Donmez, 2013. "Agricultural Commodity Price Volatility and Its Macroeconomic Determinants: A GARCH-MIDAS Approach," JRC Working Papers JRC84138, Joint Research Centre (Seville site).
  123. Neville Francis & Eric Ghysels & Michael T. Owyang, 2011. "The low-frequency impact of daily monetary policy shocks," Working Papers 2011-009, Federal Reserve Bank of St. Louis.
  124. Grassi, Stefano & Santucci de Magistris, Paolo, 2015. "It's all about volatility of volatility: Evidence from a two-factor stochastic volatility model," Journal of Empirical Finance, Elsevier, vol. 30(C), pages 62-78.
  125. Gloria González-Rivera & Tae-Hwy Lee, 2007. "Nonlinear Time Series in Financial Forecasting," Working Papers 200803, University of California at Riverside, Department of Economics, revised Feb 2008.
  126. Andreou, Elena, 2016. "On the use of high frequency measures of volatility in MIDAS regressions," Journal of Econometrics, Elsevier, vol. 193(2), pages 367-389.
  127. Helmut Lütkepohl, 2010. "Forecasting Aggregated Time Series Variables: A Survey," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2010(2), pages 1-26.
  128. Biswas, Anindya, 2014. "The output gap and expected security returns," Review of Financial Economics, Elsevier, vol. 23(3), pages 131-140.
  129. Çelik, Sibel & Ergin, Hüseyin, 2014. "Volatility forecasting using high frequency data: Evidence from stock markets," Economic Modelling, Elsevier, vol. 36(C), pages 176-190.
  130. Neville Francis, 2012. "The Low-Frequency Impact of Daily Monetary Policy Shock," 2012 Meeting Papers 198, Society for Economic Dynamics.
  131. Degiannakis, Stavros & Filis, George, 2017. "Forecasting oil prices," MPRA Paper 77531, University Library of Munich, Germany.
  132. Girardin, Eric & Joyeux, Roselyne, 2013. "Macro fundamentals as a source of stock market volatility in China: A GARCH-MIDAS approach," Economic Modelling, Elsevier, vol. 34(C), pages 59-68.
  133. Francisco Blasques & Siem Jan Koopman & Max Mallee, 2014. "Low Frequency and Weighted Likelihood Solutions for Mixed Frequency Dynamic Factor Models," Tinbergen Institute Discussion Papers 14-105/III, Tinbergen Institute.
  134. Visser, Marcel P., 2008. "Forecasting S&P 500 Daily Volatility using a Proxy for Downward Price Pressure," MPRA Paper 11100, University Library of Munich, Germany.
  135. Huang, Lin & Wang, Zijun, 2014. "Is the investment factor a proxy for time-varying investment opportunities? The US and international evidence," Journal of Banking & Finance, Elsevier, vol. 44(C), pages 219-232.
  136. Anders B. Trolle & Eduardo S. Schwartz, 2010. "An Empirical Analysis of the Swaption Cube," NBER Working Papers 16549, National Bureau of Economic Research, Inc.
  137. Fulvio Corsi & Davide Pirino & Roberto Renò, 2008. "Volatility forecasting: the jumps do matter," Department of Economics University of Siena 534, Department of Economics, University of Siena.
  138. Christian T. Brownlees & Giampiero M. Gallo, 2010. "Comparison of Volatility Measures: a Risk Management Perspective," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 8(1), pages 29-56, Winter.
  139. Elena Andreou & Andros Kourtellos, 2015. "The State and the Future of Cyprus Macroeconomic Forecasting," Cyprus Economic Policy Review, University of Cyprus, Economics Research Centre, vol. 9(1), pages 73-90, June.
  140. Aue, Alexander & Horváth, Lajos & Hurvich, Clifford & Soulier, Philippe, 2014. "Limit Laws In Transaction-Level Asset Price Models," Econometric Theory, Cambridge University Press, vol. 30(03), pages 536-579, June.
  141. Kasparis, Ioannis & Phillips, Peter C.B., 2012. "Dynamic misspecification in nonparametric cointegrating regression," Journal of Econometrics, Elsevier, vol. 168(2), pages 270-284.
  142. Wang, Xunxiao & Wu, Chongfeng & Xu, Weidong, 2015. "Volatility forecasting: The role of lunch-break returns, overnight returns, trading volume and leverage effects," International Journal of Forecasting, Elsevier, vol. 31(3), pages 609-619.
  143. Chambers, Marcus J., 2016. "The estimation of continuous time models with mixed frequency data," Journal of Econometrics, Elsevier, vol. 193(2), pages 390-404.
  144. Sévi, Benoît, 2013. "An empirical analysis of the downside risk-return trade-off at daily frequency," Economic Modelling, Elsevier, vol. 31(C), pages 189-197.
  145. Lucian-Liviu Albu & Radu Lupu & Adrian Cantemir Calin, 2015. "Interactions between financial markets and macroeconomic variables in EU: a nonlinear modeling approach," ERSA conference papers ersa15p685, European Regional Science Association.
  146. Kihwan Kim & Norman Swanson, 2013. "Diffusion Index Model Specification and Estimation Using Mixed Frequency Datasets," Departmental Working Papers 201315, Rutgers University, Department of Economics.
  147. Berger, Philip G., 2011. "Challenges and opportunities in disclosure research—A discussion of ‘the financial reporting environment: Review of the recent literature’," Journal of Accounting and Economics, Elsevier, vol. 51(1), pages 204-218.
  148. Hautsch, Nikolaus & Kyj, Lada M. & Malec, Peter, 2011. "The merit of high-frequency data in portfolio allocation," CFS Working Paper Series 2011/24, Center for Financial Studies (CFS).
  149. Erik Kole & Thijs Markwat & Anne Opschoor & Dick van Dijk, 2015. "Forecasting Value-at-Risk under Temporal and Portfolio Aggregation," Tinbergen Institute Discussion Papers 15-140/III, Tinbergen Institute, revised 19 Apr 2017.
  150. Ghysels, Eric & Sohn, Bumjean, 2009. "Which power variation predicts volatility well?," Journal of Empirical Finance, Elsevier, vol. 16(4), pages 686-700, September.
  151. LUPU, Radu & CALIN, Adrian Cantemir, 2014. "A Mixed Frequency Analysis Of Connections Between Macroeconomic Variables And Stock Markets In Central And Eastern Europe," Studii Financiare (Financial Studies), Centre of Financial and Monetary Research "Victor Slavescu", vol. 18(2), pages 69-79.
  152. Viceira, Luis M., 2012. "Bond risk, bond return volatility, and the term structure of interest rates," International Journal of Forecasting, Elsevier, vol. 28(1), pages 97-117.
  153. Qian, Hang, 2010. "Linear regression using both temporally aggregated and temporally disaggregated data: Revisited," MPRA Paper 32686, University Library of Munich, Germany.
  154. Knut Are Aastveit & Claudia Foroni & Francesco Ravazzolo, 2014. "Density forecasts with MIDAS models," Working Papers 0021, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
  155. Adam E Clements & Ayesha Scott & Annastiina Silvennoinen, 2012. "Forecasting multivariate volatility in larger dimensions: some practical issues," NCER Working Paper Series 80, National Centre for Econometric Research.
  156. Chun Liu & John M. Maheu, 2009. "Forecasting realized volatility: a Bayesian model-averaging approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(5), pages 709-733.
  157. Ghysels, Eric, 2016. "Macroeconomics and the reality of mixed frequency data," Journal of Econometrics, Elsevier, vol. 193(2), pages 294-314.
  158. Belén Nieto & Alfonso Novales Cinca & Gonzalo Rubio, 2014. "Macroeconomic and Financial Determinants of the Volatility of Corporate Bond Returns," Documentos de Trabajo del ICAE 2014-25, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
  159. Dirk Drechsel & Stefan Neuwirth, 2016. "Taming volatile high frequency data with long lag structure: An optimal filtering approach for forecasting," KOF Working papers 16-407, KOF Swiss Economic Institute, ETH Zurich.
  160. Adam Clements & Ralf Becker, 2009. "A nonparametric approach to forecasting realized volatility," NCER Working Paper Series 43, National Centre for Econometric Research.
  161. Qian, Hang, 2016. "A computationally efficient method for vector autoregression with mixed frequency data," Journal of Econometrics, Elsevier, vol. 193(2), pages 433-437.
  162. Schumacher, Christian, 2016. "A comparison of MIDAS and bridge equations," International Journal of Forecasting, Elsevier, vol. 32(2), pages 257-270.
  163. Christian T. Brownlees & Giampiero Gallo, 2007. "Volatility Forecasting Using Explanatory Variables and Focused Selection Criteria," Econometrics Working Papers Archive wp2007_04, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
  164. Diego J. Pedregal & Javier J. Pérez & Antonio Sánchez Fuentes, 2014. "A Tookit to strengthen Government," Hacienda Pública Española, IEF, vol. 211(4), pages 117-146, December.
  165. Eric Ghysels & Jonathan H. Wright, 2006. "Forecasting professional forecasters," Finance and Economics Discussion Series 2006-10, Board of Governors of the Federal Reserve System (U.S.).
  166. Elena Andreou & Eric Ghysels, 2004. "Monitoring for Disruptions in Financial Markets," CIRANO Working Papers 2004s-26, CIRANO.
  167. Kuzin, Vladimir N. & Marcellino, Massimiliano & Schumacher, Christian, 2009. "MIDAS versus mixed-frequency VAR: nowcasting GDP in the euro area," Discussion Paper Series 1: Economic Studies 2009,07, Deutsche Bundesbank, Research Centre.
  168. Gomes, Pedro & Taamouti, Abderrahim, 2016. "In search of the determinants of European asset market comovements," International Review of Economics & Finance, Elsevier, vol. 44(C), pages 103-117.
  169. Teresa Leal & Diego Pedregal & Javier Pérez, 2011. "Short-term monitoring of the Spanish government balance," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 2(1), pages 97-119, March.
  170. Todorova, Neda & Souček, Michael, 2014. "The impact of trading volume, number of trades and overnight returns on forecasting the daily realized range," Economic Modelling, Elsevier, vol. 36(C), pages 332-340.
This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.