IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/104379.html
   My bibliography  Save this paper

Bayesian Fuzzy Clustering with Robust Weighted Distance for Multiple ARIMA and Multivariate Time-Series

Author

Listed:
  • Pacifico, Antonio

Abstract

The paper suggests and develops a computational approach to improve hierarchical fuzzy clustering time-series analysis when accounting for high dimensional and noise problems in dynamic data. A Robust Weighted Distance measure between pairs of sets of Auto-Regressive Integrated Moving Average models is used. It is robust because Bayesian Model Selection methodology is performed with a set of conjugate informative priors in order to discover the most probable set of clusters capturing different dynamics and interconnections among time-varying data, and weighted because each time-series is 'adjusted' by own Posterior Model Size distribution in order to group dynamic data objects into 'ad hoc' homogenous clusters. Monte Carlo methods are used to compute exact posterior probabilities for each cluster chosen and thus avoid the problem of increasing the overall probability of errors that plagues classical statistical methods based on significance tests. Empirical and simulated examples describe the functioning and the performance of the procedure. Discussions with related works and possible extensions of the methodology to jointly deal with endogeneity issues and misspecified dynamics in high dimensional multicountry setups are also displayed.

Suggested Citation

  • Pacifico, Antonio, 2020. "Bayesian Fuzzy Clustering with Robust Weighted Distance for Multiple ARIMA and Multivariate Time-Series," MPRA Paper 104379, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:104379
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/104379/1/MPRA_paper_104379.pdf
    File Function: original version
    Download Restriction: no

    File URL: https://mpra.ub.uni-muenchen.de/115709/1/MPRA_paper_115709.pdf
    File Function: revised version
    Download Restriction: no

    File URL: https://mpra.ub.uni-muenchen.de/117391/1/Manuscript_AP.pdf
    File Function: revised version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maharaj, E.A., 1994. "A Significance Test for Classifying ARMA Models," Monash Econometrics and Business Statistics Working Papers 18/94, Monash University, Department of Econometrics and Business Statistics.
    2. Antonio Pacifico, 2019. "Structural Panel Bayesian VAR Model to Deal with Model Misspecification and Unobserved Heterogeneity Problems," Econometrics, MDPI, vol. 7(1), pages 1-24, March.
    3. Umberto Triacca, 2016. "Measuring the Distance between Sets of ARMA Models," Econometrics, MDPI, vol. 4(3), pages 1-11, July.
    4. J. Carroll & Jih-Jie Chang, 1970. "Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition," Psychometrika, Springer;The Psychometric Society, vol. 35(3), pages 283-319, September.
    5. Antonio Pacifico, 2019. "International Co-movements and Business Cycles Synchronization Across Advanced Economies: A SPBVAR Evidence," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 8(4), pages 68-84, July.
    6. Domenico Piccolo, 1990. "A Distance Measure For Classifying Arima Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 11(2), pages 153-164, March.
    7. Gary Koop & Dimitris Korobilis, 2012. "Forecasting Inflation Using Dynamic Model Averaging," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 53(3), pages 867-886, August.
    8. Bradley P. Carlin & Alan E. Gelfand & Adrian F. M. Smith, 1992. "Hierarchical Bayesian Analysis of Changepoint Problems," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 41(2), pages 389-405, June.
    9. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2006. "Predicting volatility: getting the most out of return data sampled at different frequencies," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 59-95.
    10. Kadiyala, K Rao & Karlsson, Sune, 1997. "Numerical Methods for Estimation and Inference in Bayesian VAR-Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(2), pages 99-132, March-Apr.
    11. Corduas, Marcella & Piccolo, Domenico, 2008. "Time series clustering and classification by the autoregressive metric," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 1860-1872, January.
    12. C. Horan, 1969. "Multidimensional scaling: Combining observations when individuals have different perceptual structures," Psychometrika, Springer;The Psychometric Society, vol. 34(2), pages 139-165, June.
    13. repec:ibn:ijspnl:v:8:y:2019:i:4:p:68 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. E. Otranto, 2011. "Classification of Volatility in Presence of Changes in Model Parameters," Working Paper CRENoS 201113, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    2. Liu, Shen & Maharaj, Elizabeth Ann, 2013. "A hypothesis test using bias-adjusted AR estimators for classifying time series in small samples," Computational Statistics & Data Analysis, Elsevier, vol. 60(C), pages 32-49.
    3. Otranto, Edoardo, 2008. "Clustering heteroskedastic time series by model-based procedures," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4685-4698, June.
    4. Francesca Di Iorio & Umberto Triacca, 2022. "A comparison between VAR processes jointly modeling GDP and Unemployment rate in France and Germany," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(3), pages 617-635, September.
    5. Pacifico, Antonio, 2020. "Structural Panel Bayesian VAR with Multivariate Time-varying Volatility to jointly deal with Structural Changes, Policy Regime Shifts, and Endogeneity Issues," MPRA Paper 104292, University Library of Munich, Germany.
    6. Vilar, J.A. & Alonso, A.M. & Vilar, J.M., 2010. "Non-linear time series clustering based on non-parametric forecast densities," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2850-2865, November.
    7. Umberto Triacca, 2016. "Measuring the Distance between Sets of ARMA Models," Econometrics, MDPI, vol. 4(3), pages 1-11, July.
    8. Otranto, Edoardo, 2010. "Identifying financial time series with similar dynamic conditional correlation," Computational Statistics & Data Analysis, Elsevier, vol. 54(1), pages 1-15, January.
    9. Sonia Díaz & José Vilar, 2010. "Comparing Several Parametric and Nonparametric Approaches to Time Series Clustering: A Simulation Study," Journal of Classification, Springer;The Classification Society, vol. 27(3), pages 333-362, November.
    10. Di Iorio, Francesca & Triacca, Umberto, 2013. "Testing for Granger non-causality using the autoregressive metric," Economic Modelling, Elsevier, vol. 33(C), pages 120-125.
    11. Pierpaolo D’Urso & Livia Giovanni & Riccardo Massari & Dario Lallo, 2013. "Noise fuzzy clustering of time series by autoregressive metric," METRON, Springer;Sapienza Università di Roma, vol. 71(3), pages 217-243, November.
    12. Antonio Pacifico, 2021. "Structural Panel Bayesian VAR with Multivariate Time-Varying Volatility to Jointly Deal with Structural Changes, Policy Regime Shifts, and Endogeneity Issues," Econometrics, MDPI, vol. 9(2), pages 1-35, May.
    13. Francesca Di Iorio & Umberto Triacca, 2014. "Testing for A Set of Linear Restrictions in VARMA Models Using Autoregressive Metric: An Application to Granger Causality Test," Econometrics, MDPI, vol. 2(4), pages 1-14, December.
    14. Knotek, Edward S. & Zaman, Saeed, 2023. "Real-time density nowcasts of US inflation: A model combination approach," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1736-1760.
    15. Yoshio Takane & Forrest Young & Jan Leeuw, 1977. "Nonmetric individual differences multidimensional scaling: An alternating least squares method with optimal scaling features," Psychometrika, Springer;The Psychometric Society, vol. 42(1), pages 7-67, March.
    16. Beibei Zhang & Rong Chen, 2018. "Nonlinear Time Series Clustering Based on Kolmogorov-Smirnov 2D Statistic," Journal of Classification, Springer;The Classification Society, vol. 35(3), pages 394-421, October.
    17. Iacopini, Matteo & Poon, Aubrey & Rossini, Luca & Zhu, Dan, 2023. "Bayesian mixed-frequency quantile vector autoregression: Eliciting tail risks of monthly US GDP," Journal of Economic Dynamics and Control, Elsevier, vol. 157(C).
    18. Qian, Hang, 2013. "Vector Autoregression with Mixed Frequency Data," MPRA Paper 47856, University Library of Munich, Germany.
    19. Paloma Taltavull de La Paz, 2021. "Predicting housing prices. A long term housing price path for Spanish regions," LARES lares-2021-4dra, Latin American Real Estate Society (LARES).
    20. Stefano Grassi & Nima Nonejad & Paolo Santucci De Magistris, 2017. "Forecasting With the Standardized Self‐Perturbed Kalman Filter," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(2), pages 318-341, March.

    More about this item

    Keywords

    Distance Measures; Fuzzy Clustering; ARIMA Time-Series; Bayesian Model Selection; MCMC Integrations.;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:104379. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.