IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v73y2025ics1544612324017082.html
   My bibliography  Save this article

Can joint modelling of external variables sampled at different frequencies enhance long-term Bitcoin volatility forecasts?

Author

Listed:
  • Aras, Serkan
  • Özdemir, Mehmet Ozan
  • Çılgın, Cihan

Abstract

While monthly and weekly indices are commonly used for long-term Bitcoin volatility modelling, this study examines the role of daily indices in forecasting. Additionally, we evaluate the incremental contribution of daily indices when combined with the more frequently employed monthly and weekly indices. The findings reveal that daily Economic Policy Uncertainty (EPU) and Geopolitical Risk (GPR) indices outperform their monthly counterparts in both in-sample explanatory power and out-of-sample forecast accuracy. Moreover, it has been observed that using indices at different frequencies together significantly improves predictive performance. This study, therefore, demonstrates that mixed-frequency indices offer complementary insights for modelling Bitcoin volatility.

Suggested Citation

  • Aras, Serkan & Özdemir, Mehmet Ozan & Çılgın, Cihan, 2025. "Can joint modelling of external variables sampled at different frequencies enhance long-term Bitcoin volatility forecasts?," Finance Research Letters, Elsevier, vol. 73(C).
  • Handle: RePEc:eee:finlet:v:73:y:2025:i:c:s1544612324017082
    DOI: 10.1016/j.frl.2024.106679
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612324017082
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2024.106679?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fang, Libing & Bouri, Elie & Gupta, Rangan & Roubaud, David, 2019. "Does global economic uncertainty matter for the volatility and hedging effectiveness of Bitcoin?," International Review of Financial Analysis, Elsevier, vol. 61(C), pages 29-36.
    2. Aslanidis, Nektarios & Bariviera, Aurelio F. & López, Óscar G., 2022. "The link between cryptocurrencies and Google Trends attention," Finance Research Letters, Elsevier, vol. 47(PA).
    3. Dario Caldara & Matteo Iacoviello, 2022. "Measuring Geopolitical Risk," American Economic Review, American Economic Association, vol. 112(4), pages 1194-1225, April.
    4. Peter R. Hansen & Asger Lunde & James M. Nason, 2011. "The Model Confidence Set," Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
    5. Xia, Yufei & Sang, Chong & He, Lingyun & Wang, Ziyao, 2023. "The role of uncertainty index in forecasting volatility of Bitcoin: Fresh evidence from GARCH-MIDAS approach," Finance Research Letters, Elsevier, vol. 52(C).
    6. Urquhart, Andrew, 2018. "What causes the attention of Bitcoin?," Economics Letters, Elsevier, vol. 166(C), pages 40-44.
    7. Koutmos, Dimitrios, 2018. "Return and volatility spillovers among cryptocurrencies," Economics Letters, Elsevier, vol. 173(C), pages 122-127.
    8. Robert F. Engle & Eric Ghysels & Bumjean Sohn, 2013. "Stock Market Volatility and Macroeconomic Fundamentals," The Review of Economics and Statistics, MIT Press, vol. 95(3), pages 776-797, July.
    9. Christian Conrad & Anessa Custovic & Eric Ghysels, 2018. "Long- and Short-Term Cryptocurrency Volatility Components: A GARCH-MIDAS Analysis," JRFM, MDPI, vol. 11(2), pages 1-12, May.
    10. Wei, Yu & Wang, Yizhi & Lucey, Brian M. & Vigne, Samuel A., 2023. "Cryptocurrency uncertainty and volatility forecasting of precious metal futures markets," Journal of Commodity Markets, Elsevier, vol. 29(C).
    11. de la Horra, Luis P. & de la Fuente, Gabriel & Perote, Javier, 2019. "The drivers of Bitcoin demand: A short and long-run analysis," International Review of Financial Analysis, Elsevier, vol. 62(C), pages 21-34.
    12. Smales, L.A., 2022. "Investor attention in cryptocurrency markets," International Review of Financial Analysis, Elsevier, vol. 79(C).
    13. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    14. Hyunyoung Choi & Hal Varian, 2012. "Predicting the Present with Google Trends," The Economic Record, The Economic Society of Australia, vol. 88(s1), pages 2-9, June.
    15. Aggarwal, Divya, 2019. "Do bitcoins follow a random walk model?," Research in Economics, Elsevier, vol. 73(1), pages 15-22.
    16. Christian Conrad & Onno Kleen, 2020. "Two are better than one: Volatility forecasting using multiplicative component GARCH‐MIDAS models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(1), pages 19-45, January.
    17. Lucey, Brian M. & Vigne, Samuel A. & Yarovaya, Larisa & Wang, Yizhi, 2022. "The cryptocurrency uncertainty index," Finance Research Letters, Elsevier, vol. 45(C).
    18. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2006. "Predicting volatility: getting the most out of return data sampled at different frequencies," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 59-95.
    19. Xiao, Jihong & Wang, Yudong, 2021. "Investor attention and oil market volatility: Does economic policy uncertainty matter?," Energy Economics, Elsevier, vol. 97(C).
    20. Chao Liang & Yaojie Zhang & Xiafei Li & Feng Ma, 2022. "Which predictor is more predictive for Bitcoin volatility? And why?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 1947-1961, April.
    21. Al Guindy, Mohamed, 2021. "Cryptocurrency price volatility and investor attention," International Review of Economics & Finance, Elsevier, vol. 76(C), pages 556-570.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmed, Mohamed Shaker & El-Masry, Ahmed A. & Al-Maghyereh, Aktham I. & Kumar, Satish, 2024. "Cryptocurrency volatility: A review, synthesis, and research agenda," Research in International Business and Finance, Elsevier, vol. 71(C).
    2. Huang, Yisu & Xu, Weiju & Huang, Dengshi & Zhao, Chenchen, 2023. "Chinese crude oil futures volatility and sustainability: An uncertainty indices perspective," Resources Policy, Elsevier, vol. 80(C).
    3. Chao Liang & Yaojie Zhang & Xiafei Li & Feng Ma, 2022. "Which predictor is more predictive for Bitcoin volatility? And why?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 1947-1961, April.
    4. Min Liu & Chien‐Chiang Lee & Wei‐Chong Choo, 2021. "An empirical study on the role of trading volume and data frequency in volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 792-816, August.
    5. Nikolaos A. Kyriazis, 2021. "A Survey on Volatility Fluctuations in the Decentralized Cryptocurrency Financial Assets," JRFM, MDPI, vol. 14(7), pages 1-46, June.
    6. Xiafei Li & Yu Wei & Xiaodan Chen & Feng Ma & Chao Liang & Wang Chen, 2022. "Which uncertainty is powerful to forecast crude oil market volatility? New evidence," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 4279-4297, October.
    7. Zhang, Jiaming & Xiang, Yitian & Zou, Yang & Guo, Songlin, 2024. "Volatility forecasting of Chinese energy market: Which uncertainty have better performance?," International Review of Financial Analysis, Elsevier, vol. 91(C).
    8. Segnon, Mawuli & Gupta, Rangan & Wilfling, Bernd, 2024. "Forecasting stock market volatility with regime-switching GARCH-MIDAS: The role of geopolitical risks," International Journal of Forecasting, Elsevier, vol. 40(1), pages 29-43.
    9. Wei, Yu & Wang, Yizhi & Lucey, Brian M. & Vigne, Samuel A., 2023. "Cryptocurrency uncertainty and volatility forecasting of precious metal futures markets," Journal of Commodity Markets, Elsevier, vol. 29(C).
    10. Christian Conrad & Robert F. Engle, 2025. "Modelling Volatility Cycles: The MF2‐GARCH Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 40(4), pages 438-454, June.
    11. Díaz, Juan D. & Hansen, Erwin & Cabrera, Gabriel, 2024. "Machine-learning stock market volatility: Predictability, drivers, and economic value," International Review of Financial Analysis, Elsevier, vol. 94(C).
    12. Bouteska, Ahmed & Sharif, Taimur & Isskandarani, Layal & Abedin, Mohammad Zoynul, 2025. "Market efficiency and its determinants: Macro-level dynamics and micro-level characteristics of cryptocurrencies," International Review of Economics & Finance, Elsevier, vol. 98(C).
    13. Liang, Chao & Xia, Zhenglan & Lai, Xiaodong & Wang, Lu, 2022. "Natural gas volatility prediction: Fresh evidence from extreme weather and extended GARCH-MIDAS-ES model," Energy Economics, Elsevier, vol. 116(C).
    14. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
    15. Luca Scaffidi Domianello & Giampiero M. Gallo & Edoardo Otranto, 2024. "Smooth and Abrupt Dynamics in Financial Volatility: The MS‐MEM‐MIDAS," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 86(1), pages 21-43, February.
    16. Wei, Yu & Liu, Jing & Lai, Xiaodong & Hu, Yang, 2017. "Which determinant is the most informative in forecasting crude oil market volatility: Fundamental, speculation, or uncertainty?," Energy Economics, Elsevier, vol. 68(C), pages 141-150.
    17. Salisu, Afees A. & Ogbonna, Ahamuefula E. & Lasisi, Lukman & Olaniran, Abeeb, 2022. "Geopolitical risk and stock market volatility in emerging markets: A GARCH – MIDAS approach," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
    18. Xue Gong & Weiguo Zhang & Yuan Zhao & Xin Ye, 2023. "Forecasting stock volatility with a large set of predictors: A new forecast combination method," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1622-1647, November.
    19. Nguyen, Hoang & Javed, Farrukh, 2023. "Dynamic relationship between Stock and Bond returns: A GAS MIDAS copula approach," Journal of Empirical Finance, Elsevier, vol. 73(C), pages 272-292.
    20. Virbickaitė, Audronė & Nguyen, Hoang & Tran, Minh-Ngoc, 2023. "Bayesian predictive distributions of oil returns using mixed data sampling volatility models," Resources Policy, Elsevier, vol. 86(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:73:y:2025:i:c:s1544612324017082. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.