IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper

It’s all about volatility (of volatility): evidence from a two-factor stochastic volatility model

  • Stefano Grassi

    ()

    (Aarhus University and CREATES)

  • Paolo Santucci de Magistris

    ()

    (Aarhus University and CREATES)

The persistent nature of equity volatility is investigated by means of a multi-factor stochastic volatility model with time varying parameters. The parameters are estimated by means of a sequential indirect inference procedure which adopts as auxiliary model a time-varying generalization of the HAR model for the realized volatility series. It emerges that during the recent financial crisis the relative weight of the daily component dominates over the monthly term. The estimates of the two factor stochastic volatility model suggest that the change in the dynamic structure of the realized volatility during the financial crisis is due to the increase in the volatility of the persistent volatility term. As a consequence of the dynamics in the stochastic volatility parameters, the shape and curvature of the volatility smile evolve trough time.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: ftp://ftp.econ.au.dk/creates/rp/13/rp13_03.pdf
Download Restriction: no

Paper provided by Department of Economics and Business Economics, Aarhus University in its series CREATES Research Papers with number 2013-03.

as
in new window

Length: 42
Date of creation: 02 2013
Date of revision:
Handle: RePEc:aah:create:2013-03
Contact details of provider: Web page: http://www.econ.au.dk/afn/

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Tim Bollerslev & Hao Zhou, 2001. "Estimating stochastic volatility diffusion using conditional moments of integrated volatility," Finance and Economics Discussion Series 2001-49, Board of Governors of the Federal Reserve System (U.S.).
  2. Torben G. Andersen & Luca Benzoni & Jesper Lund, 2002. "An Empirical Investigation of Continuous-Time Equity Return Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1239-1284, 06.
  3. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-54, May-June.
  4. Jan J. J. Groen & Richard Paap & Francesco Ravazzolo, 2009. "Real-time inflation forecasting in a changing world," Staff Reports 388, Federal Reserve Bank of New York.
  5. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
  6. Chernov, Mikhail & Gallant, A. Ronald & Ghysels, Eric & Tauchen, George, 2002. "Alternative Models for Stock Price Dynamic," Working Papers 02-03, Duke University, Department of Economics.
  7. Frijns, Bart & Lehnert, Thorsten & Zwinkels, Remco C.J., 2011. "Modeling structural changes in the volatility process," Journal of Empirical Finance, Elsevier, vol. 18(3), pages 522-532, June.
  8. Fulvio Corsi & Stefan Mittnik & Christian Pigorsch & Uta Pigorsch, 2008. "The Volatility of Realized Volatility," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 46-78.
  9. Lan Zhang & Per A. Mykland & Yacine Ait-Sahalia, 2003. "A Tale of Two Time Scales: Determining Integrated Volatility with Noisy High Frequency Data," NBER Working Papers 10111, National Bureau of Economic Research, Inc.
  10. Robert F. Engle & Jose Gonzalo Rangel, 2008. "The Spline-GARCH Model for Low-Frequency Volatility and Its Global Macroeconomic Causes," Review of Financial Studies, Society for Financial Studies, vol. 21(3), pages 1187-1222, May.
  11. GIOT, Pierre & LAURENT, Sébastien, . "Modelling daily Value-at-Risk using realized volatility and ARCH type models," CORE Discussion Papers RP 1708, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  12. McAleer, Michael & Medeiros, Marcelo C., 2008. "A multiple regime smooth transition Heterogeneous Autoregressive model for long memory and asymmetries," Journal of Econometrics, Elsevier, vol. 147(1), pages 104-119, November.
  13. Davide Delle Monache & Ivan Petrella, 2014. "Adaptive Models and Heavy Tails," Birkbeck Working Papers in Economics and Finance 1409, Birkbeck, Department of Economics, Mathematics & Statistics.
  14. Koop, Gary & Korobilis, Dimitris, 2010. "Forecasting Inflation Using Dynamic Model Averaging," SIRE Discussion Papers 2010-113, Scottish Institute for Research in Economics (SIRE).
  15. Offer Lieberman & Peter Phillips, 2008. "Refined Inference on Long Memory in Realized Volatility," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 254-267.
  16. John M. Maheu & Thomas H. McCurdy, 2002. "Nonlinear Features of Realized FX Volatility," The Review of Economics and Statistics, MIT Press, vol. 84(4), pages 668-681, November.
  17. Daniel Covitz & Nellie Liang & Gustavo A. Suarez, 2013. "The Evolution of a Financial Crisis: Collapse of the Asset-Backed Commercial Paper Market," Journal of Finance, American Finance Association, vol. 68(3), pages 815-848, 06.
  18. Durbin, James & Koopman, Siem Jan, 2001. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, number 9780198523543, May.
  19. Asai, M. & McAleer, M.J. & Medeiros, M., 2011. "Modelling and Forecasting Noisy Realized Volatility," Econometric Institute Research Papers EI 2011-05, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  20. Fulvio Corsi & Roberto Renò, 2012. "Discrete-Time Volatility Forecasting With Persistent Leverage Effect and the Link With Continuous-Time Volatility Modeling," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 368-380, January.
  21. Nour Meddahi, 2003. "ARMA representation of integrated and realized variances," Econometrics Journal, Royal Economic Society, vol. 6(2), pages 335-356, December.
  22. Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
  23. Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "Predicting Volatility: Getting the Most out of Return Data Sampled at Different Frequencies," CIRANO Working Papers 2004s-19, CIRANO.
  24. Martens, Martin & van Dijk, Dick & de Pooter, Michiel, 2009. "Forecasting S&P 500 volatility: Long memory, level shifts, leverage effects, day-of-the-week seasonality, and macroeconomic announcements," International Journal of Forecasting, Elsevier, vol. 25(2), pages 282-303.
  25. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
  26. S. Bordignon & D. Raggi, 2010. "Long memory and nonlinearities in realized volatility: a Markov switching approach," Working Papers 694, Dipartimento Scienze Economiche, Universita' di Bologna.
  27. Guay, Alain & Scaillet, Olivier, 2003. "Indirect Inference, Nuisance Parameter, and Threshold Moving Average Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(1), pages 122-32, January.
  28. Pena, Ignacio & Rubio, Gonzalo & Serna, Gregorio, 1999. "Why do we smile? On the determinants of the implied volatility function," Journal of Banking & Finance, Elsevier, vol. 23(8), pages 1151-1179, August.
  29. Gallant, A. Ronald & Hsu, Chien-Te & Tauchen, George, 2000. "Using Daily Range Data to Calibrate Volatility Diffusions and Extract the Forward Integrated Variance," Working Papers 00-04, Duke University, Department of Economics.
  30. Luc, BAUWENS & G., STORTI, 2007. "A Component GARCH Model with Time Varying Weights," Discussion Papers (ECON - Département des Sciences Economiques) 2007012, Université catholique de Louvain, Département des Sciences Economiques.
  31. Gourieroux, C & Monfort, A & Renault, E, 1993. "Indirect Inference," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(S), pages S85-118, Suppl. De.
  32. Ole E. Barndorff-Nielsen & Neil Shephard, 2006. "Econometrics of Testing for Jumps in Financial Economics Using Bipower Variation," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(1), pages 1-30.
  33. Eduardo Rossi & Paolo Santucci de Magistris, 2011. "Estimation of long memory in integrated variance," CREATES Research Papers 2011-11, Department of Economics and Business Economics, Aarhus University.
  34. Dridi, Ramdan & Guay, Alain & Renault, Eric, 2007. "Indirect inference and calibration of dynamic stochastic general equilibrium models," Journal of Econometrics, Elsevier, vol. 136(2), pages 397-430, February.
  35. MEDDAHI, Nour, 2001. "A Theoretical Comparison Between Integrated and Realized Volatilies," Cahiers de recherche 2001-26, Universite de Montreal, Departement de sciences economiques.
  36. Michael McAleer & Marcelo C. Medeiros, 2011. "Forecasting Realized Volatility With Linear And Nonlinear Univariate Models," Journal of Economic Surveys, Wiley Blackwell, vol. 25(1), pages 6-18, 02.
  37. Eklund, Jana & Karlsson, Sune, 2005. "Forecast Combination and Model Averaging Using Predictive Measures," CEPR Discussion Papers 5268, C.E.P.R. Discussion Papers.
  38. Koop, Gary & Leon-Gonzalez, Roberto & Strachan, Rodney W., 2009. "On the evolution of the monetary policy transmission mechanism," Journal of Economic Dynamics and Control, Elsevier, vol. 33(4), pages 997-1017, April.
  39. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 7(2), pages 174-196, Spring.
  40. Daniel M. Covitz & J. Nellie Liang & Gustavo A. Suarez, 2009. "The evolution of a financial crisis: panic in the asset-backed commercial paper market," Finance and Economics Discussion Series 2009-36, Board of Governors of the Federal Reserve System (U.S.).
  41. Lars Forsberg & Eric Ghysels, 2007. "Why Do Absolute Returns Predict Volatility So Well?," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 5(1), pages 31-67.
  42. Chun Liu & John M Maheu, 2007. "Are there Structural Breaks in Realized Volatility?," Working Papers tecipa-304, University of Toronto, Department of Economics.
  43. Giorgio E. Primiceri, 2005. "Time Varying Structural Vector Autoregressions and Monetary Policy," Review of Economic Studies, Oxford University Press, vol. 72(3), pages 821-852.
  44. Andersen T. G & Bollerslev T. & Diebold F. X & Labys P., 2001. "The Distribution of Realized Exchange Rate Volatility," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 42-55, March.
  45. Drew Creal & Siem Jan Koopman & André Lucas, 2013. "Generalized Autoregressive Score Models With Applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(5), pages 777-795, 08.
  46. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling and Forecasting of Return Volatility," CREATES Research Papers 2007-18, Department of Economics and Business Economics, Aarhus University.
  47. Kyongwook Choi & Wei-Choun Yu & Eric Zivot, 2008. "Long Memory versus Structural Breaks in Modeling and Forecasting Realized Volatility," Working Papers UWEC-2008-20-FC, University of Washington, Department of Economics.
  48. Ole E. Barndorff-Nielsen & Almut E. D. Veraart, 2012. "Stochastic Volatility of Volatility and Variance Risk Premia," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 11(1), pages 1-46, December.
  49. Alain Guay & Olivier Scaillet, 1999. "Indirect Inference, Nuisance Parameter and Threshold Moving Average," Cahiers de recherche CREFE / CREFE Working Papers 95, CREFE, Université du Québec à Montréal.
  50. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
  51. Bjørn Eraker, 2004. "Do Stock Prices and Volatility Jump? Reconciling Evidence from Spot and Option Prices," Journal of Finance, American Finance Association, vol. 59(3), pages 1367-1404, 06.
  52. Andersen, Torben G. & Bollerslev, Tim & Huang, Xin, 2011. "A reduced form framework for modeling volatility of speculative prices based on realized variation measures," Journal of Econometrics, Elsevier, vol. 160(1), pages 176-189, January.
  53. Peter Carr & Liuren Wu, 2009. "Variance Risk Premiums," Review of Financial Studies, Society for Financial Studies, vol. 22(3), pages 1311-1341, March.
  54. Neil Shephard & Ole E. Barndorff-Nielsen, 2002. "Estimating quadratic variation using realised variance," Economics Series Working Papers 2001-W20, University of Oxford, Department of Economics.
  55. Bjørn Eraker & Michael Johannes & Nicholas Polson, 2003. "The Impact of Jumps in Volatility and Returns," Journal of Finance, American Finance Association, vol. 58(3), pages 1269-1300, 06.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:aah:create:2013-03. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.