IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

It’s all about volatility (of volatility): evidence from a two-factor stochastic volatility model

  • Stefano Grassi

    ()

    (Aarhus University and CREATES)

  • Paolo Santucci de Magistris

    ()

    (Aarhus University and CREATES)

The persistent nature of equity volatility is investigated by means of a multi-factor stochastic volatility model with time varying parameters. The parameters are estimated by means of a sequential indirect inference procedure which adopts as auxiliary model a time-varying generalization of the HAR model for the realized volatility series. It emerges that during the recent financial crisis the relative weight of the daily component dominates over the monthly term. The estimates of the two factor stochastic volatility model suggest that the change in the dynamic structure of the realized volatility during the financial crisis is due to the increase in the volatility of the persistent volatility term. As a consequence of the dynamics in the stochastic volatility parameters, the shape and curvature of the volatility smile evolve trough time.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: ftp://ftp.econ.au.dk/creates/rp/13/rp13_03.pdf
Download Restriction: no

Paper provided by School of Economics and Management, University of Aarhus in its series CREATES Research Papers with number 2013-03.

as
in new window

Length: 42
Date of creation: 02 2013
Date of revision:
Handle: RePEc:aah:create:2013-03
Contact details of provider: Web page: http://www.econ.au.dk/afn/

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Corsi, Fulvio & Kretschmer, Uta & Mittnik, Stefan & Pigorsch, Christian, 2005. "The volatility of realized volatility," CFS Working Paper Series 2005/33, Center for Financial Studies (CFS).
  2. Durbin, James & Koopman, Siem Jan, 2001. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, number 9780198523543, July.
  3. Eklund, Jana & Karlsson, Sune, 2005. "Forecast Combination and Model Averaging Using Predictive Measures," CEPR Discussion Papers 5268, C.E.P.R. Discussion Papers.
  4. Manabu Asai & Michael McAleer & Marcelo C. Medeiros, 2011. "Modelling and Forecasting Noisy Realized Volatility," KIER Working Papers 758, Kyoto University, Institute of Economic Research.
  5. Michael McAleer & Marcelo C. Medeiros, 2010. "Forecasting Realized Volatility with Linear and Nonlinear Univariate Models," Working Papers in Economics 10/28, University of Canterbury, Department of Economics and Finance.
  6. Alain Guay & Olivier Scaillet, 1999. "Indirect Inference, Nuisance Parameter and Threshold Moving Average," Cahiers de recherche CREFE / CREFE Working Papers 95, CREFE, Université du Québec à Montréal.
  7. Chun Liu & John M. Maheu, 2008. "Are There Structural Breaks in Realized Volatility?," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 6(3), pages 326-360, Summer.
  8. Giot, Pierre & Laurent, Sebastien, 2004. "Modelling daily Value-at-Risk using realized volatility and ARCH type models," Journal of Empirical Finance, Elsevier, vol. 11(3), pages 379-398, June.
  9. Mikhail Chernov & A. Ronald Gallant & Eric Ghysels & George Tauchen, 2002. "Alternative Models for Stock Price Dynamics," CIRANO Working Papers 2002s-58, CIRANO.
  10. Michael McAller & Marcelo C. Medeiros, 2007. "A multiple regime smooth transition heterogeneous autoregressive model for long memory and asymmetries," Textos para discussão 544, Department of Economics PUC-Rio (Brazil).
  11. Martens, Martin & van Dijk, Dick & de Pooter, Michiel, 2009. "Forecasting S&P 500 volatility: Long memory, level shifts, leverage effects, day-of-the-week seasonality, and macroeconomic announcements," International Journal of Forecasting, Elsevier, vol. 25(2), pages 282-303.
  12. Groen, J.J.J. & Paap, R., 2009. "Real-time inflation forecasting in a changing world," Econometric Institute Research Papers EI 2009-19, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  13. Choi, Kyongwook & Yu, Wei-Choun & Zivot, Eric, 2010. "Long memory versus structural breaks in modeling and forecasting realized volatility," Journal of International Money and Finance, Elsevier, vol. 29(5), pages 857-875, September.
  14. Gallant, A. Ronald & Hsu, Chien-Te & Tauchen, George, 2000. "Using Daily Range Data to Calibrate Volatility Diffusions and Extract the Forward Integrated Variance," Working Papers 00-04, Duke University, Department of Economics.
  15. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
  16. S. Bordignon & D. Raggi, 2010. "Long memory and nonlinearities in realized volatility: a Markov switching approach," Working Papers 694, Dipartimento Scienze Economiche, Universita' di Bologna.
  17. Neil Shephard & Ole E. Barndorff-Nielsen, 2002. "Estimating quadratic variation using realised variance," Economics Series Working Papers 2001-W20, University of Oxford, Department of Economics.
  18. Daniel M. Covitz & J. Nellie Liang & Gustavo A. Suarez, 2009. "The evolution of a financial crisis: panic in the asset-backed commercial paper market," Finance and Economics Discussion Series 2009-36, Board of Governors of the Federal Reserve System (U.S.).
  19. Neil Shephard & Ole Barndorff-Nielsen, 2003. "Econometrics of testing for jumps in financial economics using bipower variation," Economics Series Working Papers 2004-FE-01, University of Oxford, Department of Economics.
  20. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
  21. Luc, BAUWENS & G., STORTI, 2007. "A Component GARCH Model with Time Varying Weights," Discussion Papers (ECON - Département des Sciences Economiques) 2007012, Université catholique de Louvain, Département des Sciences Economiques.
  22. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
  23. Eduardo Rossi & Paolo Santucci de Magistris, 2012. "Estimation of long memory in integrated variance," DEM Working Papers Series 017, University of Pavia, Department of Economics and Management.
  24. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-54, May-June.
  25. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
  26. Frijns, Bart & Lehnert, Thorsten & Zwinkels, Remco C.J., 2011. "Modeling structural changes in the volatility process," Journal of Empirical Finance, Elsevier, vol. 18(3), pages 522-532, June.
  27. Drew Creal & Siem Jan Koopman & André Lucas, 2013. "Generalized Autoregressive Score Models With Applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(5), pages 777-795, 08.
  28. Koop, Gary & Leon-Gonzalez, Roberto & Strachan, Rodney W., 2009. "On the evolution of the monetary policy transmission mechanism," Journal of Economic Dynamics and Control, Elsevier, vol. 33(4), pages 997-1017, April.
  29. Andersen T. G & Bollerslev T. & Diebold F. X & Labys P., 2001. "The Distribution of Realized Exchange Rate Volatility," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 42-55, March.
  30. Ole E. Barndorff-Nielsen & Almut E. D. Veraart, 2012. "Stochastic Volatility of Volatility and Variance Risk Premia," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 11(1), pages 1-46, December.
  31. Robert F. Engle & Jose Gonzalo Rangel, 2008. "The Spline-GARCH Model for Low-Frequency Volatility and Its Global Macroeconomic Causes," Review of Financial Studies, Society for Financial Studies, vol. 21(3), pages 1187-1222, May.
  32. Bjørn Eraker, 2004. "Do Stock Prices and Volatility Jump? Reconciling Evidence from Spot and Option Prices," Journal of Finance, American Finance Association, vol. 59(3), pages 1367-1404, 06.
  33. Bollerslev, Tim & Zhou, Hao, 2002. "Estimating stochastic volatility diffusion using conditional moments of integrated volatility," Journal of Econometrics, Elsevier, vol. 109(1), pages 33-65, July.
  34. Torben G. Andersen & Tim Bollerslev & Xin Huang, 2007. "A Reduced Form Framework for Modeling Volatility of Speculative Prices based on Realized Variation Measures," CREATES Research Papers 2007-14, School of Economics and Management, University of Aarhus.
  35. Bjørn Eraker & Michael Johannes & Nicholas Polson, 2003. "The Impact of Jumps in Volatility and Returns," Journal of Finance, American Finance Association, vol. 58(3), pages 1269-1300, 06.
  36. Daniel Covitz & Nellie Liang & Gustavo A. Suarez, 2013. "The Evolution of a Financial Crisis: Collapse of the Asset-Backed Commercial Paper Market," Journal of Finance, American Finance Association, vol. 68(3), pages 815-848, 06.
  37. Lan Zhang & Per A. Mykland & Yacine Ait-Sahalia, 2003. "A Tale of Two Time Scales: Determining Integrated Volatility with Noisy High Frequency Data," NBER Working Papers 10111, National Bureau of Economic Research, Inc.
  38. Nour Meddahi, 2002. "A theoretical comparison between integrated and realized volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 479-508.
  39. Gary Koop & Dimitris Korobilis, 2012. "Forecasting Inflation Using Dynamic Model Averaging," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 53(3), pages 867-886, 08.
  40. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
  41. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 7(2), pages 174-196, Spring.
  42. Torben G. Andersen & Luca Benzoni & Jesper Lund, 2001. "An Empirical Investigation of Continuous-Time Equity Return Models," NBER Working Papers 8510, National Bureau of Economic Research, Inc.
  43. John M. Maheu & Thomas H. McCurdy, 2001. "Nonlinear Features of Realized FX Volatility," CIRANO Working Papers 2001s-42, CIRANO.
  44. Offer Lieberman & Peter Phillips, 2008. "Refined Inference on Long Memory in Realized Volatility," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 254-267.
  45. Nour MEDDAHI, 2002. "Arma Representation Of Integrated And Realized Variances," Cahiers de recherche 20-2002, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
  46. Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "Predicting Volatility: Getting the Most out of Return Data Sampled at Different Frequencies," NBER Working Papers 10914, National Bureau of Economic Research, Inc.
  47. repec:oup:restud:v:72:y:2005:i:3:p:821-852 is not listed on IDEAS
  48. Pena, Ignacio & Rubio, Gonzalo & Serna, Gregorio, 1999. "Why do we smile? On the determinants of the implied volatility function," Journal of Banking & Finance, Elsevier, vol. 23(8), pages 1151-1179, August.
  49. Gourieroux, C. & Monfort, A. & Renault, E., 1992. "Indirect Inference," Papers 92.279, Toulouse - GREMAQ.
  50. Guay, Alain & Scaillet, Olivier, 2003. "Indirect Inference, Nuisance Parameter, and Threshold Moving Average Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(1), pages 122-32, January.
  51. Lars Forsberg & Eric Ghysels, 2007. "Why Do Absolute Returns Predict Volatility So Well?," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 5(1), pages 31-67.
  52. Peter Carr & Liuren Wu, 2009. "Variance Risk Premiums," Review of Financial Studies, Society for Financial Studies, vol. 22(3), pages 1311-1341, March.
  53. Dridi, Ramdan & Guay, Alain & Renault, Eric, 2007. "Indirect inference and calibration of dynamic stochastic general equilibrium models," Journal of Econometrics, Elsevier, vol. 136(2), pages 397-430, February.
  54. Fulvio Corsi & Roberto Ren�, 2012. "Discrete-Time Volatility Forecasting With Persistent Leverage Effect and the Link With Continuous-Time Volatility Modeling," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 368-380, January.
  55. Davide Delle Monache & Ivan Petrella, 2014. "Adaptive Models and Heavy Tails," Birkbeck Working Papers in Economics and Finance 1409, Birkbeck, Department of Economics, Mathematics & Statistics.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:aah:create:2013-03. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.