IDEAS home Printed from https://ideas.repec.org/a/spr/snbeco/v5y2025i3d10.1007_s43546-025-00792-0.html
   My bibliography  Save this article

Modelling commodity market volatility with climate policy uncertainty: a GARCH-MIDAS approach

Author

Listed:
  • Lukman A. Lasisi

    (Lagos Business School Public Sector Initiative)

  • Franklin N. Ngwu

    (Lagos Business School Public Sector Initiative)

  • Mohammed K. Taliat

    (University of Abuja)

  • Abeeb O. Olaniran

    (Centre for Econometrics and Applied Research)

  • Kelechi C. Nnamdi

    (Lagos Business School Public Sector Initiative)

Abstract

This research employs the Generalized Autoregressive Conditional Heteroskedasticity-GARCH option of Mixed Data Sampling – MIDAS (GARCH-MIDAS) model to examine how well commodity return volatility can be predicted using the US climate policy uncertainty (USCPU). Our analysis utilizes 20-day annualized realized volatility returns for nine global commodities (including Aluminium, Cocoa, Coffee, Copper, Cotton, Rice, Soybean, Sugar, and Wheat) to develop the predictability model, with USCPU as the predictor. The outcomes of our investigation consistently show a considerable direct nexus between USCPU and the selected commodities. In other words, this implies that USCPU is a strong predictor of volatility in commodity returns. Therefore, our results offer implications for the pivotal role of climate change policies in influencing trading activities in the commodity market. Additionally, for robustness, we subject our data to further analysis using the economic policy uncertainty (EPU) index. This is to ascertain whether our results are index-sensitive or not, expectedly, our result shows consistency with the earlier observed pattern for CPU and confirms that our result are not sensitive to the choice of the indicator. These outcomes underscore the crucial impact of climate change considerations in investment decisions and the significant effect of economic policy uncertainty on economic and investment choices.

Suggested Citation

  • Lukman A. Lasisi & Franklin N. Ngwu & Mohammed K. Taliat & Abeeb O. Olaniran & Kelechi C. Nnamdi, 2025. "Modelling commodity market volatility with climate policy uncertainty: a GARCH-MIDAS approach," SN Business & Economics, Springer, vol. 5(3), pages 1-21, March.
  • Handle: RePEc:spr:snbeco:v:5:y:2025:i:3:d:10.1007_s43546-025-00792-0
    DOI: 10.1007/s43546-025-00792-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s43546-025-00792-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s43546-025-00792-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nicholas Apergis & Konstantinos Gavriilidis & Rangan Gupta, 2023. "Does climate policy uncertainty affect tourism demand? Evidence from time-varying causality tests," Tourism Economics, , vol. 29(6), pages 1484-1498, September.
    2. Massimo Peri, 2017. "Climate variability and the volatility of global maize and soybean prices," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 9(4), pages 673-683, August.
    3. Liu, Chang & Sun, Xiaolei & Wang, Jun & Li, Jianping & Chen, Jianming, 2021. "Multiscale information transmission between commodity markets: An EMD-Based transfer entropy network," Research in International Business and Finance, Elsevier, vol. 55(C).
    4. Pham, Son D. & Nguyen, Thao T.T. & Do, Hung X., 2024. "Impact of climate policy uncertainty on return spillover among green assets and portfolio implications," Energy Economics, Elsevier, vol. 134(C).
    5. Abhijeet Ghadge & Hendrik Wurtmann & Stefan Seuring, 2020. "Managing climate change risks in global supply chains: a review and research agenda," International Journal of Production Research, Taylor & Francis Journals, vol. 58(1), pages 44-64, January.
    6. Lubos Pástor & Pietro Veronesi, 2012. "Uncertainty about Government Policy and Stock Prices," Journal of Finance, American Finance Association, vol. 67(4), pages 1219-1264, August.
    7. Shanghui Jia & Xinhui Chen & Liyan Han & Jiayu Jin, 2023. "Global climate change and commodity markets: A hedging perspective," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(10), pages 1393-1422, October.
    8. Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016. "Measuring Economic Policy Uncertainty," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1593-1636.
    9. Anthony C Homan, 2006. "The Impact of 9/11 on Financial Risk, Volatility and Returns of Marine Firms," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 8(4), pages 387-401, December.
    10. Robert F. Engle & Eric Ghysels & Bumjean Sohn, 2013. "Stock Market Volatility and Macroeconomic Fundamentals," The Review of Economics and Statistics, MIT Press, vol. 95(3), pages 776-797, July.
    11. Stefano Battiston & Antoine Mandel & Irene Monasterolo & Franziska Schütze & Gabriele Visentin, 2017. "A climate stress-test of the financial system," Nature Climate Change, Nature, vol. 7(4), pages 283-288, April.
    12. Fuss, Sabine & Szolgayova, Jana & Obersteiner, Michael & Gusti, Mykola, 2008. "Investment under market and climate policy uncertainty," Applied Energy, Elsevier, vol. 85(8), pages 708-721, August.
    13. Ding, Zhuanxin & Granger, Clive W. J., 1996. "Modeling volatility persistence of speculative returns: A new approach," Journal of Econometrics, Elsevier, vol. 73(1), pages 185-215, July.
    14. Nam, Kyungsik, 2021. "Investigating the effect of climate uncertainty on global commodity markets," Energy Economics, Elsevier, vol. 96(C).
    15. Abdullah Alqahtani & Michael J. Wither & Zhankui Dong & Kimberly R. Goodwin, 2020. "Impact of news-based equity market volatility on international stock markets," Journal of Applied Economics, Taylor & Francis Journals, vol. 23(1), pages 224-234, January.
    16. Rasool Dehghanzadeh Shahabad & Mehmet Balcilar, 2022. "Modelling the Dynamic Interaction between Economic Policy Uncertainty and Commodity Prices in India: The Dynamic Autoregressive Distributed Lag Approach," Mathematics, MDPI, vol. 10(10), pages 1-21, May.
    17. Ghysels, Eric, 2016. "Macroeconomics and the reality of mixed frequency data," Journal of Econometrics, Elsevier, vol. 193(2), pages 294-314.
    18. Jamilu Iliyasu & Aliyu Rafindadi Sanusi, 2024. "Climate change’s impact on commodity prices: a new challenge for monetary policy," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 23(2), pages 187-212, May.
    19. Maghyereh, Aktham & Abdoh, Hussein, 2020. "The tail dependence structure between investor sentiment and commodity markets," Resources Policy, Elsevier, vol. 68(C).
    20. Smales, L.A., 2021. "Investor attention and global market returns during the COVID-19 crisis," International Review of Financial Analysis, Elsevier, vol. 73(C).
    21. Shahzad, Syed Jawad Hussain & Raza, Naveed & Balcilar, Mehmet & Ali, Sajid & Shahbaz, Muhammad, 2017. "Can economic policy uncertainty and investors sentiment predict commodities returns and volatility?," Resources Policy, Elsevier, vol. 53(C), pages 208-218.
    22. Salisu, Afees A. & Gupta, Rangan, 2021. "Oil shocks and stock market volatility of the BRICS: A GARCH-MIDAS approach," Global Finance Journal, Elsevier, vol. 48(C).
    23. Chen, Yu-Fu & Mu, Xiaoyi, 2021. "Asymmetric volatility in commodity markets," Journal of Commodity Markets, Elsevier, vol. 22(C).
    24. Wang, Fangfang & Ghysels, Eric, 2015. "Econometric Analysis Of Volatility Component Models," Econometric Theory, Cambridge University Press, vol. 31(2), pages 362-393, April.
    25. Zhang, Tianding & Zeng, Song, 2023. "Dynamic comovement and extreme risk spillovers between international crude oil and China's non-ferrous metal futures market," Resources Policy, Elsevier, vol. 80(C).
    26. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    27. Yuandong, Su & Khaskheli, Asadullah & Raza, Syed Ali & Yousufi, Sara Qamar, 2022. "How COVID-19 influences prices of oil and precious metals: Comparison between data extracted from online searching trends and actual events," Resources Policy, Elsevier, vol. 78(C).
    28. Girardin, Eric & Joyeux, Roselyne, 2013. "Macro fundamentals as a source of stock market volatility in China: A GARCH-MIDAS approach," Economic Modelling, Elsevier, vol. 34(C), pages 59-68.
    29. Badshah, Ihsan & Demirer, Riza & Suleman, Muhammad Tahir, 2019. "The effect of economic policy uncertainty on stock-commodity correlations and its implications on optimal hedging," Energy Economics, Elsevier, vol. 84(C).
    30. Chen, Yufeng & Qu, Fang, 2019. "Leverage effect and dynamics correlation between international crude oil and China’s precious metals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    31. Christian Conrad & Onno Kleen, 2020. "Two are better than one: Volatility forecasting using multiplicative component GARCH‐MIDAS models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(1), pages 19-45, January.
    32. Kim, Hyonok & Yasuda, Yukihiro, 2021. "Economic policy uncertainty and earnings management: Evidence from Japan," Journal of Financial Stability, Elsevier, vol. 56(C).
    33. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2006. "Predicting volatility: getting the most out of return data sampled at different frequencies," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 59-95.
    34. Fang, Tong & Lee, Tae-Hwy & Su, Zhi, 2020. "Predicting the long-term stock market volatility: A GARCH-MIDAS model with variable selection," Journal of Empirical Finance, Elsevier, vol. 58(C), pages 36-49.
    35. Ahmed, Maruf Yakubu & Sarkodie, Samuel Asumadu, 2021. "COVID-19 pandemic and economic policy uncertainty regimes affect commodity market volatility," Resources Policy, Elsevier, vol. 74(C).
    36. Dai, Peng-Fei & Xiong, Xiong & Duc Huynh, Toan Luu & Wang, Jiqiang, 2022. "The impact of economic policy uncertainties on the volatility of European carbon market," Journal of Commodity Markets, Elsevier, vol. 26(C).
    37. Wang, Kai-Hua & Kan, Jia-Min & Qiu, Lianhong & Xu, Shulin, 2023. "Climate policy uncertainty, oil price and agricultural commodity: From quantile and time perspective," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 256-272.
    38. Siaw Frimpong & Emmanuel N. Gyamfi & Zangina Ishaq & Samuel Kwaku Agyei & Daniel Agyapong & Anokye M. Adam & François Pérés, 2021. "Can Global Economic Policy Uncertainty Drive the Interdependence of Agricultural Commodity Prices? Evidence from Partial Wavelet Coherence Analysis," Complexity, Hindawi, vol. 2021, pages 1-13, June.
    39. Kaldorf, Matthias & Rottner, Matthias, 2024. "Climate Minsky Moments and endogenous financial crises," Discussion Papers 26/2024, Deutsche Bundesbank.
    40. Sharif, Arshian & Aloui, Chaker & Yarovaya, Larisa, 2020. "COVID-19 pandemic, oil prices, stock market, geopolitical risk and policy uncertainty nexus in the US economy: Fresh evidence from the wavelet-based approach," International Review of Financial Analysis, Elsevier, vol. 70(C).
    41. Min Bai & Ly Ho, 2023. "How do gold and oil react to the COVID-19 pandemic: A review," Energy & Environment, , vol. 34(7), pages 2876-2902, November.
    42. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    43. Henry He Huang & Joseph Kerstein & Chong Wang, 2018. "The impact of climate risk on firm performance and financing choices: An international comparison," Journal of International Business Studies, Palgrave Macmillan;Academy of International Business, vol. 49(5), pages 633-656, July.
    44. Wang, Lu & Ma, Feng & Liu, Jing & Yang, Lin, 2020. "Forecasting stock price volatility: New evidence from the GARCH-MIDAS model," International Journal of Forecasting, Elsevier, vol. 36(2), pages 684-694.
    45. Albulescu, Claudiu Tiberiu & Demirer, Riza & Raheem, Ibrahim D. & Tiwari, Aviral Kumar, 2019. "Does the U.S. economic policy uncertainty connect financial markets? Evidence from oil and commodity currencies," Energy Economics, Elsevier, vol. 83(C), pages 375-388.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adediran, Idris A. & Swaray, Raymond, 2023. "Carbon trading amidst global uncertainty: The role of policy and geopolitical uncertainty," Economic Modelling, Elsevier, vol. 123(C).
    2. Min Liu & Chien‐Chiang Lee & Wei‐Chong Choo, 2021. "An empirical study on the role of trading volume and data frequency in volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 792-816, August.
    3. Salisu, Afees A. & Ogbonna, Ahamuefula E. & Lasisi, Lukman & Olaniran, Abeeb, 2022. "Geopolitical risk and stock market volatility in emerging markets: A GARCH – MIDAS approach," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
    4. Raza, Syed Ali & Masood, Amna & Benkraiem, Ramzi & Urom, Christian, 2023. "Forecasting the volatility of precious metals prices with global economic policy uncertainty in pre and during the COVID-19 period: Novel evidence from the GARCH-MIDAS approach," Energy Economics, Elsevier, vol. 120(C).
    5. Lu Wang & Feng Ma & Guoshan Liu & Qiaoqi Lang, 2023. "Do extreme shocks help forecast oil price volatility? The augmented GARCH‐MIDAS approach," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(2), pages 2056-2073, April.
    6. Alain Hecq & Marie Ternes & Ines Wilms, 2023. "Hierarchical Regularizers for Reverse Unrestricted Mixed Data Sampling Regressions," Papers 2301.10592, arXiv.org, revised Nov 2024.
    7. Zhang, Jiaming & Xiang, Yitian & Zou, Yang & Guo, Songlin, 2024. "Volatility forecasting of Chinese energy market: Which uncertainty have better performance?," International Review of Financial Analysis, Elsevier, vol. 91(C).
    8. Segnon, Mawuli & Gupta, Rangan & Wilfling, Bernd, 2024. "Forecasting stock market volatility with regime-switching GARCH-MIDAS: The role of geopolitical risks," International Journal of Forecasting, Elsevier, vol. 40(1), pages 29-43.
    9. Damien Kunjal & Faeezah Peerbhai & Paul-Francois Muzindutsi, 2022. "Political, economic, and financial country risks and the volatility of the South African Exchange Traded Fund market: A GARCH-MIDAS approach," Risk Management, Palgrave Macmillan, vol. 24(3), pages 236-258, September.
    10. Afees A. Salisu & Riza Demirer & Rangan Gupta, 2023. "Policy uncertainty and stock market volatility revisited: The predictive role of signal quality," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(8), pages 2307-2321, December.
    11. Liu, Zhenhua & Zhang, Huiying & Ding, Zhihua & Lv, Tao & Wang, Xu & Wang, Deqing, 2022. "When are the effects of economic policy uncertainty on oil–stock correlations larger? Evidence from a regime-switching analysis," Economic Modelling, Elsevier, vol. 114(C).
    12. Salisu, Afees A. & Gupta, Rangan & Bouri, Elie, 2023. "Testing the forecasting power of global economic conditions for the volatility of international REITs using a GARCH-MIDAS approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 88(C), pages 303-314.
    13. Tan, Xueping & Zhong, Yiran & Vivian, Andrew & Geng, Yong & Wang, Ziyi & Zhao, Difei, 2024. "Towards an era of multi-source uncertainty: A systematic and bibliometric analysis," International Review of Financial Analysis, Elsevier, vol. 95(PB).
    14. Afees A. Salisu & Ahamuefula E. Ogbonna & Elie Bouri & Rangan Gupta, 2024. "Economic Policy Uncertainty and Bank-Level Stock Returns Volatility of the United States: A Mixed-Frequency Perspective," Working Papers 202444, University of Pretoria, Department of Economics.
    15. Libing Fang & Baizhu Chen & Honghai Yu & Yichuo Qian, 2018. "The importance of global economic policy uncertainty in predicting gold futures market volatility: A GARCH‐MIDAS approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(3), pages 413-422, March.
    16. Salisu, Afees A. & Ogbonna, Ahamuefula E. & Gupta, Rangan & Bouri, Elie, 2024. "Energy-related uncertainty and international stock market volatility," The Quarterly Review of Economics and Finance, Elsevier, vol. 95(C), pages 280-293.
    17. Wu, Xinyu & Zhao, An & Cheng, Tengfei, 2023. "A Real-Time GARCH-MIDAS model," Finance Research Letters, Elsevier, vol. 56(C).
    18. Han, Yingwei & Li, Jie, 2023. "The impact of global economic policy uncertainty on portfolio optimization: A Black–Litterman approach," International Review of Financial Analysis, Elsevier, vol. 86(C).
    19. Yun-Shi Dai & Peng-Fei Dai & Wei-Xing Zhou, 2024. "The impact of geopolitical risk on the international agricultural market: Empirical analysis based on the GJR-GARCH-MIDAS model," Papers 2404.01641, arXiv.org.
    20. Lv, Wendai & Qi, Jipeng & Feng, Jing, 2023. "Economic policy uncertainty and environmental governance company volatility: Evidence from China," Research in International Business and Finance, Elsevier, vol. 64(C).

    More about this item

    Keywords

    Commodity market; Return volatility; GARCH-MIDAS; Climate policy uncertainty; Economic policy uncertainty;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E44 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Financial Markets and the Macroeconomy
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:snbeco:v:5:y:2025:i:3:d:10.1007_s43546-025-00792-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.