IDEAS home Printed from https://ideas.repec.org/a/wly/jfutmk/v40y2020i7p1109-1126.html
   My bibliography  Save this article

Uncertainty and the volatility forecasting power of option‐implied volatility

Author

Listed:
  • Byounghyun Jeon
  • Sung Won Seo
  • Jun Sik Kim

Abstract

This study investigates the impact of uncertainty on the volatility forecasting power of option‐implied volatility. Option‐implied volatility is a powerful predictor of future volatility, particularly during periods of high uncertainty. This is consistent with option‐implied volatility being largely determined by volatility‐informed traders (rather than directional traders) when uncertainty is high. New volatility forecasting models that incorporate such interaction outperform benchmark models, both in‐ and out‐of‐sample. The new models also better predict future volatility during the 2008 global financial crisis, for which benchmark models perform poorly. The results are robust to alternative choices of benchmark models, loss functions, and estimation windows.

Suggested Citation

  • Byounghyun Jeon & Sung Won Seo & Jun Sik Kim, 2020. "Uncertainty and the volatility forecasting power of option‐implied volatility," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(7), pages 1109-1126, July.
  • Handle: RePEc:wly:jfutmk:v:40:y:2020:i:7:p:1109-1126
    DOI: 10.1002/fut.22116
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/fut.22116
    Download Restriction: no

    File URL: https://libkey.io/10.1002/fut.22116?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Segal, Gill & Shaliastovich, Ivan & Yaron, Amir, 2015. "Good and bad uncertainty: Macroeconomic and financial market implications," Journal of Financial Economics, Elsevier, vol. 117(2), pages 369-397.
    2. Yoram Halevy & Vincent Feltkamp, 2005. "A Bayesian Approach to Uncertainty Aversion," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(2), pages 449-466.
    3. Bollerslev, Tim & Gibson, Michael & Zhou, Hao, 2011. "Dynamic estimation of volatility risk premia and investor risk aversion from option-implied and realized volatilities," Journal of Econometrics, Elsevier, vol. 160(1), pages 235-245, January.
    4. Huang, Darien & Schlag, Christian & Shaliastovich, Ivan & Thimme, Julian, 2019. "Volatility-of-Volatility Risk," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 54(6), pages 2423-2452, December.
    5. Xilong Chen & Eric Ghysels, 2011. "News--Good or Bad--and Its Impact on Volatility Predictions over Multiple Horizons," The Review of Financial Studies, Society for Financial Studies, vol. 24(1), pages 46-81, October.
    6. Busch, Thomas & Christensen, Bent Jesper & Nielsen, Morten Ørregaard, 2011. "The role of implied volatility in forecasting future realized volatility and jumps in foreign exchange, stock, and bond markets," Journal of Econometrics, Elsevier, vol. 160(1), pages 48-57, January.
    7. Lars Forsberg & Eric Ghysels, 2007. "Why Do Absolute Returns Predict Volatility So Well?," Journal of Financial Econometrics, Oxford University Press, vol. 5(1), pages 31-67.
    8. Segal, Uzi, 1987. "The Ellsberg Paradox and Risk Aversion: An Anticipated Utility Approach," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 28(1), pages 175-202, February.
    9. Sophie X. Ni & Jun Pan & Allen M. Poteshman, 2008. "Volatility Information Trading in the Option Market," Journal of Finance, American Finance Association, vol. 63(3), pages 1059-1091, June.
    10. Borochin, Paul & Zhao, Yanhui, 2019. "Belief heterogeneity in the option markets and the cross-section of stock returns," Journal of Banking & Finance, Elsevier, vol. 107(C), pages 1-1.
    11. Seo, Sung Won & Kim, Jun Sik, 2015. "The information content of option-implied information for volatility forecasting with investor sentiment," Journal of Banking & Finance, Elsevier, vol. 50(C), pages 106-120.
    12. Park, Yang-Ho, 2015. "Volatility-of-volatility and tail risk hedging returns," Journal of Financial Markets, Elsevier, vol. 26(C), pages 38-63.
    13. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
    14. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
    15. Ole E. Barndorff-Nielsen & Neil Shephard, 2002. "Estimating quadratic variation using realized variance," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 457-477.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan, Xiang & Bai, Jiancheng & Li, Xiafei & Chen, Zhonglu, 2022. "Can dimensional reduction technology make better use of the information of uncertainty indices when predicting volatility of Chinese crude oil futures?," Resources Policy, Elsevier, vol. 75(C).
    2. Zhang, Yaojie & Wahab, M.I.M. & Wang, Yudong, 2023. "Forecasting crude oil market volatility using variable selection and common factor," International Journal of Forecasting, Elsevier, vol. 39(1), pages 486-502.
    3. Zhang, Hailiang & Sattar, Muhammad Atif & Wang, Haijun, 2024. "Uncertainty measure: As a proxy for the degree of market imperfection," International Review of Economics & Finance, Elsevier, vol. 89(PB), pages 159-171.
    4. Dimos S. Kambouroudis & David G. McMillan & Katerina Tsakou, 2021. "Forecasting realized volatility: The role of implied volatility, leverage effect, overnight returns, and volatility of realized volatility," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(10), pages 1618-1639, October.
    5. Gu, Tiantian & Venkateswaran, Anand & Erath, Marc, 2023. "Impact of fiscal stimulus on volatility: A cross-country analysis," Research in International Business and Finance, Elsevier, vol. 65(C).
    6. Lu, Fei & Ma, Feng & Li, Pan & Huang, Dengshi, 2022. "Natural gas volatility predictability in a data-rich world," International Review of Financial Analysis, Elsevier, vol. 83(C).
    7. Zhang, Zhikai & He, Mengxi & Zhang, Yaojie & Wang, Yudong, 2021. "Realized skewness and the short-term predictability for aggregate stock market volatility," Economic Modelling, Elsevier, vol. 103(C).
    8. Wael DAMMAK, 2024. "Assessing Effect of Market Sentiment on Pricing of European Currency Options ‎," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 8(6), pages 1224-1244, June.
    9. Hui Qu & Tianyang Wang & Peng Shangguan & Mengying He, 2024. "Revisiting the puzzle of jumps in volatility forecasting: The new insights of high‐frequency jump intensity," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(2), pages 218-251, February.
    10. Yanchu Liu & Chen Liu & Yiyao Chen & Xianming Sun, 2024. "Option‐Implied Ambiguity and Equity Return Predictability," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(9), pages 1556-1577, September.
    11. Li, Xiafei & Liang, Chao & Chen, Zhonglu & Umar, Muhammad, 2022. "Forecasting crude oil volatility with uncertainty indicators: New evidence," Energy Economics, Elsevier, vol. 108(C).
    12. Zhikai Zhang & Yaojie Zhang & Yudong Wang, 2024. "Forecasting the equity premium using weighted regressions: Does the jump variation help?," Empirical Economics, Springer, vol. 66(5), pages 2049-2082, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Byun, Suk Joon & Kim, Jun Sik, 2013. "The information content of risk-neutral skewness for volatility forecasting," Journal of Empirical Finance, Elsevier, vol. 23(C), pages 142-161.
    2. Bu, Ruijun & Hizmeri, Rodrigo & Izzeldin, Marwan & Murphy, Anthony & Tsionas, Mike, 2023. "The contribution of jump signs and activity to forecasting stock price volatility," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 144-164.
    3. Danyan Wen & Mengxi He & Yaojie Zhang & Yudong Wang, 2022. "Forecasting realized volatility of Chinese stock market: A simple but efficient truncated approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 230-251, March.
    4. Francesco Audrino & Yujia Hu, 2016. "Volatility Forecasting: Downside Risk, Jumps and Leverage Effect," Econometrics, MDPI, vol. 4(1), pages 1-24, February.
    5. Seo, Sung Won & Kim, Jun Sik, 2015. "The information content of option-implied information for volatility forecasting with investor sentiment," Journal of Banking & Finance, Elsevier, vol. 50(C), pages 106-120.
    6. Zhang, Zhikai & He, Mengxi & Zhang, Yaojie & Wang, Yudong, 2021. "Realized skewness and the short-term predictability for aggregate stock market volatility," Economic Modelling, Elsevier, vol. 103(C).
    7. Santos, Douglas G. & Candido, Osvaldo & Tófoli, Paula V., 2022. "Forecasting risk measures using intraday and overnight information," The North American Journal of Economics and Finance, Elsevier, vol. 60(C).
    8. Chun, Dohyun & Cho, Hoon & Ryu, Doojin, 2023. "Discovering the drivers of stock market volatility in a data-rich world," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 82(C).
    9. Dimos S. Kambouroudis & David G. McMillan & Katerina Tsakou, 2021. "Forecasting realized volatility: The role of implied volatility, leverage effect, overnight returns, and volatility of realized volatility," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(10), pages 1618-1639, October.
    10. Lyócsa, Štefan & Molnár, Peter & Výrost, Tomáš, 2021. "Stock market volatility forecasting: Do we need high-frequency data?," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1092-1110.
    11. Zhiyuan Pan & Jun Zhang & Yudong Wang & Juan Huang, 2024. "Modeling and forecasting stock return volatility using the HARGARCH model with VIX information," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(8), pages 1383-1403, August.
    12. Bekaert, Geert & Hoerova, Marie, 2014. "The VIX, the variance premium and stock market volatility," Journal of Econometrics, Elsevier, vol. 183(2), pages 181-192.
    13. repec:lan:wpaper:592830 is not listed on IDEAS
    14. Kruse, Robinson & Leschinski, Christian & Will, Michael, 2016. "Comparing Predictive Accuracy under Long Memory - With an Application to Volatility Forecasting," Hannover Economic Papers (HEP) dp-571, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    15. Dudley Gilder & Leonidas Tsiaras, 2020. "Volatility forecasts embedded in the prices of crude‐oil options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(7), pages 1127-1159, July.
    16. Zhang, Yaojie & He, Mengxi & Wang, Yudong & Wen, Danyan, 2025. "Model specification for volatility forecasting benchmark," International Review of Financial Analysis, Elsevier, vol. 97(C).
    17. Gong, Xu & Lin, Boqiang, 2018. "The incremental information content of investor fear gauge for volatility forecasting in the crude oil futures market," Energy Economics, Elsevier, vol. 74(C), pages 370-386.
    18. Hu, Junjie & Kuo, Weiyu & Härdle, Wolfgang Karl, 2019. "Risk of Bitcoin Market: Volatility, Jumps, and Forecasts," IRTG 1792 Discussion Papers 2019-024, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    19. Xu Gong & Boqiang Lin, 2018. "Structural breaks and volatility forecasting in the copper futures market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(3), pages 290-339, March.
    20. Hui Qu & Tianyang Wang & Peng Shangguan & Mengying He, 2024. "Revisiting the puzzle of jumps in volatility forecasting: The new insights of high‐frequency jump intensity," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(2), pages 218-251, February.
    21. Wei Zhang & Kai Yan & Dehua Shen, 2021. "Can the Baidu Index predict realized volatility in the Chinese stock market?," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-31, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jfutmk:v:40:y:2020:i:7:p:1109-1126. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/0270-7314/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.