IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

A Bayesian Approach to Uncentainty Aversion

  • Yoram Halevy
  • Vincent Feltkamp

The Ellsberg paradox demonstrates that people's beliefs over uncertain events might not be representable by subjective probability. We show that if a risk averse decision maker, who has a well defined Bayesian prior, perceives an Ellsberg type decision problem as possibly composed of a bundle of several positively correlated problems, she will be uncertainty averse. We generalize this argument and derive sufficient conditions for uncertainty aversion. Copyright 2005, Wiley-Blackwell.

(This abstract was borrowed from another version of this item.)

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Our checks indicate that this address may not be valid because: 404 Not Found. If this is indeed the case, please notify (Thomas Krichel)

Download Restriction: no

Paper provided by University of Pennsylvania Center for Analytic Research and Economics in the Social Sciences in its series CARESS Working Papres with number 99-03.

in new window

Date of creation:
Date of revision:
Handle: RePEc:wop:pennca:99-03
Contact details of provider: Postal: 215-898-7701
Phone: 215-898-7701
Fax: 215-573-2057
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Larry Epstein, 1997. "Uncertainty Aversion," Working Papers epstein-97-01, University of Toronto, Department of Economics.
  2. Segal, Uzi, 1987. "The Ellsberg Paradox and Risk Aversion: An Anticipated Utility Approach," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 28(1), pages 175-202, February.
  3. Aumann, Robert J., 1997. "Rationality and Bounded Rationality," Games and Economic Behavior, Elsevier, vol. 21(1-2), pages 2-14, October.
  4. Gilboa, Itzhak, 1987. "Expected utility with purely subjective non-additive probabilities," Journal of Mathematical Economics, Elsevier, vol. 16(1), pages 65-88, February.
  5. Machina,Mark & Schmeidler,David, 1991. "A more robust definition of subjective probability," Discussion Paper Serie A 365, University of Bonn, Germany.
  6. Gilboa, Itzhak & Schmeidler, David, 1989. "Maxmin expected utility with non-unique prior," Journal of Mathematical Economics, Elsevier, vol. 18(2), pages 141-153, April.
  7. Sarin, Rakesh K & Wakker, Peter, 1992. "A Simple Axiomatization of Nonadditive Expected Utility," Econometrica, Econometric Society, vol. 60(6), pages 1255-72, November.
  8. Rothschild, Michael & Stiglitz, Joseph E., 1970. "Increasing risk: I. A definition," Journal of Economic Theory, Elsevier, vol. 2(3), pages 225-243, September.
  9. Yaari, Menahem E, 1987. "The Dual Theory of Choice under Risk," Econometrica, Econometric Society, vol. 55(1), pages 95-115, January.
  10. Sarin, Rakesh & Wakker, Peter, 1997. "A Single-Stage Approach to Anscombe and Aumann's Expected Utility," Review of Economic Studies, Wiley Blackwell, vol. 64(3), pages 399-409, July.
  11. Camerer, Colin & Weber, Martin, 1992. " Recent Developments in Modeling Preferences: Uncertainty and Ambiguity," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 325-70, October.
  12. Schmeidler, David, 1989. "Subjective Probability and Expected Utility without Additivity," Econometrica, Econometric Society, vol. 57(3), pages 571-87, May.
  13. Hoffman, Elizabeth & McCabe, Kevin & Smith, Vernon L, 1996. "Social Distance and Other-Regarding Behavior in Dictator Games," American Economic Review, American Economic Association, vol. 86(3), pages 653-60, June.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:wop:pennca:99-03. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Thomas Krichel)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.