IDEAS home Printed from https://ideas.repec.org/p/cwl/cwldpp/1700.html
   My bibliography  Save this paper

Dynamic Misspecification in Nonparametric Cointegrating Regression

Author

Abstract

Linear cointegration is known to have the important property of invariance under temporal translation. The same property is shown not to apply for nonlinear cointegration. The requisite limit theory involves sample covariances of integrable transformations of non-stationary sequences and time translated sequences, allowing for the presence of a bandwidth parameter so as to accommodate kernel regression. The theory is an extension of Wang and Phillips (2008) and is useful for the analysis of nonparametric regression models with a misspecified lag structure and in situations where temporal aggregation issues arise. The limit properties of the Nadaraya-Watson (NW) estimator for cointegrating regression under misspecified lag structure are derived, showing the NW estimator to be inconsistent with a "pseudo-true function" limit that is a local average of the true regression function. In this respect nonlinear cointegrating regression differs importantly from conventional linear cointegration which is invariant to time translation. When centred on the pseudo-function and appropriately scaled, the NW estimator still has a mixed Gaussian limit distribution. The convergence rates are the same as those obtained under correct specification but the variance of the limit distribution is larger. Some applications of the limit theory to non-linear distributed lag cointegrating regression are given and the practical import of the results for index models, functional regression models, and temporal aggregation are discussed.

Suggested Citation

  • Ioannis Kasparis & Peter C.B. Phillips, 2009. "Dynamic Misspecification in Nonparametric Cointegrating Regression," Cowles Foundation Discussion Papers 1700, Cowles Foundation for Research in Economics, Yale University.
  • Handle: RePEc:cwl:cwldpp:1700
    as

    Download full text from publisher

    File URL: http://cowles.yale.edu/sites/default/files/files/pub/d17/d1700.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Gourieroux, Christian & Monfort, Alain & Trognon, Alain, 1984. "Pseudo Maximum Likelihood Methods: Theory," Econometrica, Econometric Society, vol. 52(3), pages 681-700, May.
    2. Joon Y. Park & Peter C. B. Phillips, 2000. "Nonstationary Binary Choice," Econometrica, Econometric Society, vol. 68(5), pages 1249-1280, September.
    3. Kasparis, Ioannis & Phillips, Peter C.B., 2012. "Dynamic misspecification in nonparametric cointegrating regression," Journal of Econometrics, Elsevier, vol. 168(2), pages 270-284.
    4. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2006. "Predicting volatility: getting the most out of return data sampled at different frequencies," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 59-95.
    5. Wang, Qiying & Phillips, Peter C.B., 2009. "Asymptotic Theory For Local Time Density Estimation And Nonparametric Cointegrating Regression," Econometric Theory, Cambridge University Press, vol. 25(03), pages 710-738, June.
    6. Qiying Wang & Peter C. B. Phillips, 2009. "Structural Nonparametric Cointegrating Regression," Econometrica, Econometric Society, vol. 77(6), pages 1901-1948, November.
    7. Peter C. B. Phillips, 2001. "Descriptive econometrics for non-stationary time series with empirical illustrations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(3), pages 389-413.
    8. Park, Joon Y. & Phillips, Peter C.B., 1999. "Asymptotics For Nonlinear Transformations Of Integrated Time Series," Econometric Theory, Cambridge University Press, vol. 15(03), pages 269-298, June.
    9. Kasparis, Ioannis, 2008. "Detection Of Functional Form Misspecification In Cointegrating Relations," Econometric Theory, Cambridge University Press, vol. 24(05), pages 1373-1403, October.
    10. Davidson, Russell & MacKinnon, James G, 1981. "Several Tests for Model Specification in the Presence of Alternative Hypotheses," Econometrica, Econometric Society, vol. 49(3), pages 781-793, May.
    11. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2005. "There is a risk-return trade-off after all," Journal of Financial Economics, Elsevier, vol. 76(3), pages 509-548, June.
    12. Berkes, Istv n & Horv th, Lajos, 2006. "Convergence Of Integral Functionals Of Stochastic Processes," Econometric Theory, Cambridge University Press, vol. 22(02), pages 304-322, April.
    13. Vuong, Quang H, 1989. "Likelihood Ratio Tests for Model Selection and Non-nested Hypotheses," Econometrica, Econometric Society, vol. 57(2), pages 307-333, March.
    14. Marmer, Vadim, 2008. "Nonlinearity, nonstationarity, and spurious forecasts," Journal of Econometrics, Elsevier, vol. 142(1), pages 1-27, January.
    15. Phillips, Peter C.B., 2009. "Local Limit Theory And Spurious Nonparametric Regression," Econometric Theory, Cambridge University Press, vol. 25(06), pages 1466-1497, December.
    16. Yoosoon Chang & Joon Y. Park & Peter C. B. Phillips, 2001. "Nonlinear econometric models with cointegrated and deterministically trending regressors," Econometrics Journal, Royal Economic Society, vol. 4(1), pages 1-36.
    17. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2004. "The MIDAS Touch: Mixed Data Sampling Regression Models," University of California at Los Angeles, Anderson Graduate School of Management qt9mf223rs, Anderson Graduate School of Management, UCLA.
    18. Emmanuel Guerre, 2004. "Design-Adaptive Pointwise Nonparametric Regression Estimation for Recurrent Markov Time Series," Working Papers 2004-22, Center for Research in Economics and Statistics.
    19. Domowitz, Ian & White, Halbert, 1982. "Misspecified models with dependent observations," Journal of Econometrics, Elsevier, vol. 20(1), pages 35-58, October.
    20. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, number 8355.
    21. Ludvigson, Sydney C. & Ng, Serena, 2007. "The empirical risk-return relation: A factor analysis approach," Journal of Financial Economics, Elsevier, vol. 83(1), pages 171-222, January.
    22. Bierens, Herman J, 1990. "A Consistent Conditional Moment Test of Functional Form," Econometrica, Econometric Society, vol. 58(6), pages 1443-1458, November.
    23. Kasparis, Ioannis, 2011. "Functional Form Misspecification In Regressions With A Unit Root," Econometric Theory, Cambridge University Press, vol. 27(02), pages 285-311, April.
    24. Park, Joon Y & Phillips, Peter C B, 2001. "Nonlinear Regressions with Integrated Time Series," Econometrica, Econometric Society, vol. 69(1), pages 117-161, January.
    25. Kasparis, Ioannis, 2010. "The Bierens test for certain nonstationary models," Journal of Econometrics, Elsevier, vol. 158(2), pages 221-230, October.
    26. Xiao, Zhijie, 2009. "Functional-coefficient cointegration models," Journal of Econometrics, Elsevier, vol. 152(2), pages 81-92, October.
    27. Cai, Zongwu & Li, Qi & Park, Joon Y., 2009. "Functional-coefficient models for nonstationary time series data," Journal of Econometrics, Elsevier, vol. 148(2), pages 101-113, February.
    28. Bierens, Herman J., 1984. "Model specification testing of time series regressions," Journal of Econometrics, Elsevier, vol. 26(3), pages 323-353, December.
    29. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kasparis, Ioannis & Andreou, Elena & Phillips, Peter C.B., 2015. "Nonparametric predictive regression," Journal of Econometrics, Elsevier, vol. 185(2), pages 468-494.
    2. Qiying Wang & Peter C.B. Phillips & Ioannis Kasparis, 2017. "Latent Variable Nonparametric Cointegrating Regression," Cowles Foundation Discussion Papers 2111, Cowles Foundation for Research in Economics, Yale University.
    3. Liew, Venus Khim-Sen & Ling, Tai-Hu & Chia, Ricky Chee-Jiun & Yoon, Gawon, 2012. "On the application of the rank tests for nonlinear cointegration to PPP: The case of Papua New Guinea," Economic Modelling, Elsevier, vol. 29(2), pages 326-332.
    4. Phillips, Peter C.B. & Li, Degui & Gao, Jiti, 2017. "Estimating smooth structural change in cointegration models," Journal of Econometrics, Elsevier, vol. 196(1), pages 180-195.
    5. Dong, Chaohua & Gao, Jiti & Tjøstheim, Dag & Yin, Jiying, 2017. "Specification testing for nonlinear multivariate cointegrating regressions," Journal of Econometrics, Elsevier, vol. 200(1), pages 104-117.
    6. Banerjee Anurag & Pitarakis Jean-Yves, 2014. "Functional cointegration: definition and nonparametric estimation," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 18(5), pages 1-14, December.
    7. Kasparis, Ioannis & Phillips, Peter C.B., 2012. "Dynamic misspecification in nonparametric cointegrating regression," Journal of Econometrics, Elsevier, vol. 168(2), pages 270-284.
    8. Qiying Wang & Peter C.B. Phillips & Ioannis Kasparis, 2017. "Latent Variable Nonparametric Cointegrating Regression," Cowles Foundation Discussion Papers 3011, Cowles Foundation for Research in Economics, Yale University.
    9. Gao, Jiti & Phillips, Peter C.B., 2013. "Semiparametric estimation in triangular system equations with nonstationarity," Journal of Econometrics, Elsevier, vol. 176(1), pages 59-79.
    10. Yichen Gao & Zheng Li & Zhongjian Lin, 2014. "Semiparametric Estimation of Partially Linear Varying Coefficient Models with Time Trend and Nonstationary Regressors," Emory Economics 1412, Department of Economics, Emory University (Atlanta).

    More about this item

    Keywords

    Dynamic misspecification; Functional regression; Integrable function; Integrated process; Local time; Misspecification; Mixed normality; Nonlinear cointegration; Nonparametric regression;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:1700. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Matthew Regan). General contact details of provider: http://edirc.repec.org/data/cowleus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.