IDEAS home Printed from
   My bibliography  Save this paper

Design-Adaptive Pointwise Nonparametric Regression Estimation For Recurrent Markov Time Series


  • Guerre



A general framework is proposed for (auto)regression nonparametric estimation of recurrent time series in a class of Hilbert Markov processes with a Lipschitz conditional mean. This includes various nonstationarities by relaxing usual dependence assumptions as mixing or ergodicity, which are replaced with recurrence. The cornerstone of design-adaptation is a data-driven bandwidth choice based on an empirical bias variance tradeoff, giving rise to a random consistency rate for a uniform kernel estimator. The estimator converges with this random rate, which is the optimal minimax random rate over the considered class of recurrent time series. Extensions to general kernel estimators are investigated. For weak dependent time-series, the order of the random rate coincides with the deterministic minimax rate previously derived. New deterministic estimation rates are obtained for modified Box-Cox transformations of Random Walks.

Suggested Citation

  • Guerre, 2004. "Design-Adaptive Pointwise Nonparametric Regression Estimation For Recurrent Markov Time Series," Econometrics 0411007, University Library of Munich, Germany.
  • Handle: RePEc:wpa:wuwpem:0411007
    Note: Type of Document - pdf; pages: 35

    Download full text from publisher

    File URL:
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    1. Yakowitz, Sid, 1993. "Nearest neighbor regression estimation for null-recurrent Markov time series," Stochastic Processes and their Applications, Elsevier, vol. 48(2), pages 311-318, November.
    2. Yakowitz, Sidney & Györfi, László & Kieffer, John & Morvai, Gusztáv, 1999. "Strongly Consistent Nonparametric Forecasting and Regression for Stationary Ergodic Sequences," Journal of Multivariate Analysis, Elsevier, vol. 71(1), pages 24-41, October.
    3. E. Guerre & J. Maës, 1998. "Optimal Rate for Nonparametric Estimation in Deterministic Dynamical Systems," Statistical Inference for Stochastic Processes, Springer, vol. 1(2), pages 157-173, May.
    4. repec:crs:wpaper:9806 is not listed on IDEAS
    5. Guerre, Emmanuel, 2000. "Design Adaptive Nearest Neighbor Regression Estimation," Journal of Multivariate Analysis, Elsevier, vol. 75(2), pages 219-244, November.
    6. Peter C.B. Phillips & Joon Y. Park, 1998. "Nonstationary Density Estimation and Kernel Autoregression," Cowles Foundation Discussion Papers 1181, Cowles Foundation for Research in Economics, Yale University.
    7. Robinson, Peter M., 1997. "Large-sample inference for nonparametric regression with dependent errors," LSE Research Online Documents on Economics 302, London School of Economics and Political Science, LSE Library.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Federico M Bandi & Valentina Corradi & Daniel Wilhelm, 2016. "Possibly Nonstationary Cross-Validation," CeMMAP working papers CWP11/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    2. Scholz, Michael & Nielsen, Jens Perch & Sperlich, Stefan, 2015. "Nonparametric prediction of stock returns based on yearly data: The long-term view," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 143-155.
    3. Peter C. B. Phillips & Donggyu Sul, 2007. "Transition Modeling and Econometric Convergence Tests," Econometrica, Econometric Society, vol. 75(6), pages 1771-1855, November.
    4. Wang, Qiying & Phillips, Peter C.B., 2009. "Asymptotic Theory For Local Time Density Estimation And Nonparametric Cointegrating Regression," Econometric Theory, Cambridge University Press, vol. 25(3), pages 710-738, June.
    5. Kasparis, Ioannis & Phillips, Peter C.B., 2012. "Dynamic misspecification in nonparametric cointegrating regression," Journal of Econometrics, Elsevier, vol. 168(2), pages 270-284.
    6. Delattre, Sylvain & Gaïffas, Stéphane, 2011. "Nonparametric regression with martingale increment errors," Stochastic Processes and their Applications, Elsevier, vol. 121(12), pages 2899-2924.
    7. Phillips, Peter C.B., 2009. "Local Limit Theory And Spurious Nonparametric Regression," Econometric Theory, Cambridge University Press, vol. 25(6), pages 1466-1497, December.
    8. Peter C. B. Phillips & Donggyu Sul, 2009. "Economic transition and growth," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(7), pages 1153-1185.

    More about this item


    Nonparametric regression estimation; Recurrent time series; Design-adaptation; Optimalrandom estimation rate.;

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C2 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables
    • C3 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables
    • C4 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • C8 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpem:0411007. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (EconWPA). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.