IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v27y2011i02p285-311_00.html
   My bibliography  Save this article

Functional Form Misspecification In Regressions With A Unit Root

Author

Listed:
  • Kasparis, Ioannis

Abstract

We examine the limit properties of the nonlinear least squares (NLS) estimator under functional form misspecification in regression models with a unit root. Our theoretical framework is the same as that of Park and Phillips (2001, Econometrica 69, 117–161). We show that the limit behavior of the NLS estimator is largely determined by the relative orders of magnitude of the true and fitted models. If the estimated model is of different order of magnitude than the true model, the estimator converges to boundary points. When the pseudo-true value is on a boundary, standard methods for obtaining rates of convergence and limit distribution results are not applicable. We provide convergence rates and limit theory when the pseudo-true value is an interior point. If functional form misspecification is committed in the presence of stochastic trends, the convergence rates can be slower and the limit distribution different than that obtained under correct specification.

Suggested Citation

  • Kasparis, Ioannis, 2011. "Functional Form Misspecification In Regressions With A Unit Root," Econometric Theory, Cambridge University Press, vol. 27(02), pages 285-311, April.
  • Handle: RePEc:cup:etheor:v:27:y:2011:i:02:p:285-311_00
    as

    Download full text from publisher

    File URL: http://journals.cambridge.org/abstract_S0266466610000265
    File Function: link to article abstract page
    Download Restriction: no

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kasparis, Ioannis & Phillips, Peter C.B., 2012. "Dynamic misspecification in nonparametric cointegrating regression," Journal of Econometrics, Elsevier, vol. 168(2), pages 270-284.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:27:y:2011:i:02:p:285-311_00. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Keith Waters). General contact details of provider: http://journals.cambridge.org/jid_ECT .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.