IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/118785.html
   My bibliography  Save this paper

Why do households repay their debt in UK during the COVID-19 crisis?

Author

Listed:
  • MAMATZAKIS, E
  • Tsionas, Mike
  • Ongena, Steven

Abstract

This paper employs a vector autoregressive (VAR) model that nests neural networks and uses Mixed Data Sampling (MIDAS) techniques. We use data information related to COVID-19, financial markets, and household finances. In this paper, we investigate whether COVID-19 impacts household finances, like household debt repayments in the UK. Our results show that household debt repayments’ response to the first principal component of COVID-19 shocks is negative, albeit of low magnitude. However, when we employ specific COVID-19 related data like vaccines and tests the responses are positive, insinuating the underlying dynamic complexities. Overall, confirmed deaths and hospitalisations negatively affect household debt repayments. We also report low persistence in household debt repayments. Generalized impulse response functions confirm the main results. As draconian measures, the lockdowns are eased it appears that the COVID-19 shocks are diminishing, and household financial data converge to the levels prior to the pandemic albeit with some lags. To the best of our knowledge, this is the first study that examines the impact of the pandemic on household debt repayments. Our findings show that policy response in the future should prioritise innovation of new vaccines and testing.

Suggested Citation

  • MAMATZAKIS, E & Tsionas, Mike & Ongena, Steven, 2022. "Why do households repay their debt in UK during the COVID-19 crisis?," MPRA Paper 118785, University Library of Munich, Germany, revised 07 Oct 2023.
  • Handle: RePEc:pra:mprapa:118785
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/118785/1/MPRA_paper_118785.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Thomas Hale & Noam Angrist & Rafael Goldszmidt & Beatriz Kira & Anna Petherick & Toby Phillips & Samuel Webster & Emily Cameron-Blake & Laura Hallas & Saptarshi Majumdar & Helen Tatlow, 2021. "A global panel database of pandemic policies (Oxford COVID-19 Government Response Tracker)," Nature Human Behaviour, Nature, vol. 5(4), pages 529-538, April.
    2. Christopher Roth & Johannes Wohlfart, 2020. "How Do Expectations about the Macroeconomy Affect Personal Expectations and Behavior?," The Review of Economics and Statistics, MIT Press, vol. 102(4), pages 731-748, October.
    3. Georgarakos, Dimitris & Kenny, Geoff, 2022. "Household spending and fiscal support during the COVID-19 pandemic: Insights from a new consumer survey," Journal of Monetary Economics, Elsevier, vol. 129(S), pages 1-14.
    4. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2004. "The MIDAS Touch: Mixed Data Sampling Regression Models," University of California at Los Angeles, Anderson Graduate School of Management qt9mf223rs, Anderson Graduate School of Management, UCLA.
    5. Anastasia I. Koutsomanoli‐Filippaki & Emmanuel C. Mamatzakis, 2011. "Efficiency under quantile regression: What is the relationship with risk in the EU banking industry?," Review of Financial Economics, John Wiley & Sons, vol. 20(2), pages 84-95, May.
    6. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2006. "Predicting volatility: getting the most out of return data sampled at different frequencies," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 59-95.
    7. Tarne, Ruben & Bezemer, Dirk & Theobald, Thomas, 2022. "The effect of borrower-specific loan-to-value policies on household debt, wealth inequality and consumption volatility: An agent-based analysis," Journal of Economic Dynamics and Control, Elsevier, vol. 144(C).
    8. Ghysels, Eric & Wright, Jonathan H., 2009. "Forecasting Professional Forecasters," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 504-516.
    9. Dong Hwan Oh & Andrew J. Patton, 2021. "Better the Devil You Know: Improved Forecasts from Imperfect Models," Finance and Economics Discussion Series 2021-071, Board of Governors of the Federal Reserve System (U.S.).
    10. Anna Zabai, 2020. "How are household finances holding up against the Covid-19 shock?," BIS Bulletins 22, Bank for International Settlements.
    11. Kubota, So & Onishi, Koichiro & Toyama, Yuta, 2021. "Consumption responses to COVID-19 payments: Evidence from a natural experiment and bank account data," Journal of Economic Behavior & Organization, Elsevier, vol. 188(C), pages 1-17.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. MAMATZAKIS, emmanuel & MAMATZAKIS, E, 2022. "Understanding the impact of travel on wellbeing: evidence for Great Britain during the pandemic," MPRA Paper 112974, University Library of Munich, Germany.
    2. Emmanuel C. Mamatzakis & Steven Ongena & Mike G. Tsionas, 2023. "The response of household debt to COVID-19 using a neural networks VAR in OECD," Empirical Economics, Springer, vol. 65(1), pages 65-91, July.
    3. Claudia Foroni & Massimiliano Marcellino, 2013. "A survey of econometric methods for mixed-frequency data," Working Paper 2013/06, Norges Bank.
    4. Stylianos Asimakopoulos & Joan Paredes & Thomas Warmedinger, 2020. "Real‐Time Fiscal Forecasting Using Mixed‐Frequency Data," Scandinavian Journal of Economics, Wiley Blackwell, vol. 122(1), pages 369-390, January.
    5. Rong Fu & Luze Xie & Tao Liu & Juan Huang & Binbin Zheng, 2022. "Chinese Economic Growth Projections Based on Mixed Data of Carbon Emissions under the COVID-19 Pandemic," Sustainability, MDPI, vol. 14(24), pages 1-16, December.
    6. Kuzin, Vladimir & Marcellino, Massimiliano & Schumacher, Christian, 2011. "MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the euro area," International Journal of Forecasting, Elsevier, vol. 27(2), pages 529-542.
    7. Özer Karagedikli & Murat Özbilgin, 2019. "Mixed in New Zealand: Nowcasting Labour Markets with MIDAS," Reserve Bank of New Zealand Analytical Notes series AN2019/04, Reserve Bank of New Zealand.
    8. Michelle T. Armesto & Kristie M. Engemann & Michael T. Owyang, 2010. "Forecasting with mixed frequencies," Review, Federal Reserve Bank of St. Louis, vol. 92(Nov), pages 521-536.
    9. Selma Toker & Nimet Özbay & Kristofer Månsson, 2022. "Mixed data sampling regression: Parameter selection of smoothed least squares estimator," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(4), pages 718-751, July.
    10. Galvão, Ana Beatriz, 2013. "Changes in predictive ability with mixed frequency data," International Journal of Forecasting, Elsevier, vol. 29(3), pages 395-410.
    11. Lixiong Yang, 2022. "Threshold mixed data sampling (TMIDAS) regression models with an application to GDP forecast errors," Empirical Economics, Springer, vol. 62(2), pages 533-551, February.
    12. Michael P. Clements & Ana Beatriz Galvão, 2007. "Macroeconomic Forecasting with Mixed Frequency Data: Forecasting US Output Growth," Working Papers 616, Queen Mary University of London, School of Economics and Finance.
    13. Valadkhani, Abbas & Smyth, Russell, 2017. "How do daily changes in oil prices affect US monthly industrial output?," Energy Economics, Elsevier, vol. 67(C), pages 83-90.
    14. J. Isaac Miller, 2014. "Mixed-frequency Cointegrating Regressions with Parsimonious Distributed Lag Structures," Journal of Financial Econometrics, Oxford University Press, vol. 12(3), pages 584-614.
    15. Warmedinger, Thomas & Paredes, Joan & Asimakopoulos, Stylianos, 2013. "Forecasting fiscal time series using mixed frequency data," Working Paper Series 1550, European Central Bank.
    16. Zhang, Yue-Jun & Wang, Jin-Li, 2019. "Do high-frequency stock market data help forecast crude oil prices? Evidence from the MIDAS models," Energy Economics, Elsevier, vol. 78(C), pages 192-201.
    17. Clements, Michael P. & Galvao, Ana Beatriz, 2006. "Macroeconomic Forecasting with Mixed Frequency Data: Forecasting US output growth and inflation," Economic Research Papers 269743, University of Warwick - Department of Economics.
    18. Duarte, Cláudia & Rodrigues, Paulo M.M. & Rua, António, 2017. "A mixed frequency approach to the forecasting of private consumption with ATM/POS data," International Journal of Forecasting, Elsevier, vol. 33(1), pages 61-75.
    19. Huiwen Lai & Eric C. Y. Ng, 2020. "On business cycle forecasting," Frontiers of Business Research in China, Springer, vol. 14(1), pages 1-26, December.
    20. Ambrocio, Gene & Hasan, Iftekhar, 2022. "Belief polarization and Covid-19," Bank of Finland Research Discussion Papers 10/2022, Bank of Finland.

    More about this item

    Keywords

    COVID-19; household debt; ANN; VAR; MIDAS.;
    All these keywords.

    JEL classification:

    • G0 - Financial Economics - - General
    • G00 - Financial Economics - - General - - - General
    • G1 - Financial Economics - - General Financial Markets
    • I1 - Health, Education, and Welfare - - Health

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:118785. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.