IDEAS home Printed from https://ideas.repec.org/p/qut/auncer/2009_56.html
   My bibliography  Save this paper

A nonparametric approach to forecasting realized volatility

Author

Listed:
  • Adam Clements

    (QUT)

  • Ralf Becker

    (Manchester)

Abstract

A well developed literature exists in relation to modeling and forecasting asset return volatility. Much of this relate to the development of time series models of volatility. This paper proposes an alternative method for forecasting volatility that does not involve such a model. Under this approach a forecast is a weighted average of historical volatility. The greatest weight is given to periods that exhibit the most similar market conditions to the time at which the forecast is being formed. Weighting occurs by comparing short-term trends in volatility across time (as a measure of market conditions) by the application of a multivariate kernel scheme. It is found that at a 1 day forecast horizon, the proposed method produces forecasts that are significantly more accurate than competing approaches.

Suggested Citation

  • Adam Clements & Ralf Becker, 2009. "A nonparametric approach to forecasting realized volatility," NCER Working Paper Series 43, National Centre for Econometric Research.
  • Handle: RePEc:qut:auncer:2009_56
    as

    Download full text from publisher

    File URL: http://www.ncer.edu.au/papers/documents/WPNo43.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andersen T. G & Bollerslev T. & Diebold F. X & Labys P., 2001. "The Distribution of Realized Exchange Rate Volatility," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 42-55, March.
    2. Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
    3. Becker, Ralf & Clements, Adam E., 2008. "Are combination forecasts of S&P 500 volatility statistically superior?," International Journal of Forecasting, Elsevier, vol. 24(1), pages 122-133.
    4. Michael W. Brandt, 1999. "Estimating Portfolio and Consumption Choice: A Conditional Euler Equations Approach," Journal of Finance, American Finance Association, vol. 54(5), pages 1609-1645, October.
    5. Jorion, Philippe, 1995. "Predicting Volatility in the Foreign Exchange Market," Journal of Finance, American Finance Association, vol. 50(2), pages 507-528, June.
    6. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    7. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2006. "Predicting volatility: getting the most out of return data sampled at different frequencies," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 59-95.
    8. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    9. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 1999. "(Understanding, Optimizing, Using and Forecasting) Realized Volatility and Correlation," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-061, New York University, Leonard N. Stern School of Business-.
    10. Peter Reinhard Hansen & Asger Lunde & James M. Nason, 2003. "Choosing the Best Volatility Models: The Model Confidence Set Approach," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 65(s1), pages 839-861, December.
    11. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    12. Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
    13. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
    14. Blair, Bevan J. & Poon, Ser-Huang & Taylor, Stephen J., 2001. "Forecasting S&P 100 volatility: the incremental information content of implied volatilities and high-frequency index returns," Journal of Econometrics, Elsevier, vol. 105(1), pages 5-26, November.
    15. Christensen, B. J. & Prabhala, N. R., 1998. "The relation between implied and realized volatility," Journal of Financial Economics, Elsevier, vol. 50(2), pages 125-150, November.
    16. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lahaye, Jerome & Shaw, Philip, 2014. "Can we reject linearity in an HAR-RV model for the S&P 500? Insights from a nonparametric HAR-RV," Economics Letters, Elsevier, vol. 125(1), pages 43-46.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Becker Ralf & Clements Adam E & Hurn Stan, 2011. "Semi-Parametric Forecasting of Realized Volatility," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 15(3), pages 1-23, May.
    2. Becker, Ralf & Clements, Adam E., 2008. "Are combination forecasts of S&P 500 volatility statistically superior?," International Journal of Forecasting, Elsevier, vol. 24(1), pages 122-133.
    3. Dimitrios P. Louzis & Spyros Xanthopoulos‐Sisinis & Apostolos P. Refenes, 2013. "The Role of High‐Frequency Intra‐daily Data, Daily Range and Implied Volatility in Multi‐period Value‐at‐Risk Forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(6), pages 561-576, September.
    4. Becker, Ralf & Clements, Adam E. & White, Scott I., 2007. "Does implied volatility provide any information beyond that captured in model-based volatility forecasts?," Journal of Banking & Finance, Elsevier, vol. 31(8), pages 2535-2549, August.
    5. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    6. Antonakakis, Nikolaos & Darby, Julia, 2012. "Forecasting Volatility in Developing Countries' Nominal Exchange Returns," MPRA Paper 40875, University Library of Munich, Germany.
    7. Bali, Turan G. & Weinbaum, David, 2007. "A conditional extreme value volatility estimator based on high-frequency returns," Journal of Economic Dynamics and Control, Elsevier, vol. 31(2), pages 361-397, February.
    8. Adam Clements & Annastiina Silvennoinen, 2009. "On the economic benefit of utility based estimation of a volatility model," NCER Working Paper Series 44, National Centre for Econometric Research.
    9. Bauwens, Luc & Sucarrat, Genaro, 2010. "General-to-specific modelling of exchange rate volatility: A forecast evaluation," International Journal of Forecasting, Elsevier, vol. 26(4), pages 885-907, October.
    10. Benavides, Guillermo & Capistrán, Carlos, 2012. "Forecasting exchange rate volatility: The superior performance of conditional combinations of time series and option implied forecasts," Journal of Empirical Finance, Elsevier, vol. 19(5), pages 627-639.
    11. Sébastien Laurent & Jeroen V. K. Rombouts & Francesco Violante, 2012. "On the forecasting accuracy of multivariate GARCH models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 934-955, September.
    12. Koopman, Siem Jan & Jungbacker, Borus & Hol, Eugenie, 2005. "Forecasting daily variability of the S&P 100 stock index using historical, realised and implied volatility measurements," Journal of Empirical Finance, Elsevier, vol. 12(3), pages 445-475, June.
    13. Palandri, Alessandro, 2015. "Do negative and positive equity returns share the same volatility dynamics?," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 486-505.
    14. Clements, A. & Silvennoinen, A., 2013. "Volatility timing: How best to forecast portfolio exposures," Journal of Empirical Finance, Elsevier, vol. 24(C), pages 108-115.
    15. Becker, Ralf & Clements, Adam E. & White, Scott I., 2006. "On the informational efficiency of S&P500 implied volatility," The North American Journal of Economics and Finance, Elsevier, vol. 17(2), pages 139-153, August.
    16. Michael McAleer & Marcelo Medeiros, 2008. "Realized Volatility: A Review," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 10-45.
    17. Radovan Parrák, 2013. "The Economic Valuation of Variance Forecasts: An Artificial Option Market Approach," Working Papers IES 2013/09, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Aug 2013.
    18. Ralf Becker & Adam Clements & Christopher Coleman-Fenn, 2009. "Forecast performance of implied volatility and the impact of the volatility risk premium," NCER Working Paper Series 45, National Centre for Econometric Research.
    19. Prateek Sharma & Vipul _, 2015. "Forecasting stock index volatility with GARCH models: international evidence," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 32(4), pages 445-463, October.
    20. Plíhal, Tomáš & Lyócsa, Štefan, 2021. "Modeling realized volatility of the EUR/USD exchange rate: Does implied volatility really matter?," International Review of Economics & Finance, Elsevier, vol. 71(C), pages 811-829.

    More about this item

    Keywords

    Volatility; forecasts; forecast evaluation; model confidence set; nonparametric;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • G00 - Financial Economics - - General - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:qut:auncer:2009_56. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: School of Economics and Finance (email available below). General contact details of provider: https://edirc.repec.org/data/ncerrau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.