My bibliography
Save this item
Predicting Volatility: Getting the Most out of Return Data Sampled at Different Frequencies
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Hautsch, Nikolaus & Voigt, Stefan, 2019.
"Large-scale portfolio allocation under transaction costs and model uncertainty,"
Journal of Econometrics, Elsevier, vol. 212(1), pages 221-240.
- Nikolaus Hautsch & Stefan Voigt, 2017. "Large-Scale Portfolio Allocation Under Transaction Costs and Model Uncertainty," Papers 1709.06296, arXiv.org, revised Jun 2018.
- Hautsch, Nikolaus & Voigt, Stefan, 2017. "Large-scale portfolio allocation under transaction costs and model uncertainty," CFS Working Paper Series 582, Center for Financial Studies (CFS).
- Seiler, Volker, 2024.
"The relationship between Chinese and FOB prices of rare earth elements – Evidence in the time and frequency domain,"
The Quarterly Review of Economics and Finance, Elsevier, vol. 95(C), pages 160-179.
- Volker Seiler, 2024. "The relationship between Chinese and FOB prices of rare earth elements – Evidence in the time and frequency domain," Post-Print hal-04549980, HAL.
- Stylianos Asimakopoulos & Joan Paredes & Thomas Warmedinger, 2020. "Real‐Time Fiscal Forecasting Using Mixed‐Frequency Data," Scandinavian Journal of Economics, Wiley Blackwell, vol. 122(1), pages 369-390, January.
- Etienne, Xiaoli L., 2015.
"Financialization of Agricultural Commodity Markets: Do Financial Data Help to Forecast Agricultural Prices?,"
2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California
205124, Agricultural and Applied Economics Association.
- Etienne, Xiaoli, 2015. "Financialization of Agricultural Commodity Markets: Do Financial Data Help to Forecast Agricultural Prices," 2015 Conference, August 9-14, 2015, Milan, Italy 211626, International Association of Agricultural Economists.
- João C. Claudio & Katja Heinisch & Oliver Holtemöller, 2020.
"Nowcasting East German GDP growth: a MIDAS approach,"
Empirical Economics, Springer, vol. 58(1), pages 29-54, January.
- Claudio, João C. & Heinisch, Katja & Holtemöller, Oliver, 2019. "Nowcasting East German GDP growth: A MIDAS approach," IWH Discussion Papers 24/2019, Halle Institute for Economic Research (IWH).
- Afees A. Salisu & Rangan Gupta, 2021.
"How Do Housing Returns in Emerging Countries Respond to Oil Shocks? A MIDAS Touch,"
Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 57(15), pages 4286-4311, December.
- Afees A. Salisu & Rangan Gupta, 2019. "How do Housing Returns in Emerging Countries Respond to Oil Shocks? A MIDAS Touch," Working Papers 201946, University of Pretoria, Department of Economics.
- Nielsen, Morten Ørregaard & Frederiksen, Per, 2008.
"Finite sample accuracy and choice of sampling frequency in integrated volatility estimation,"
Journal of Empirical Finance, Elsevier, vol. 15(2), pages 265-286, March.
- Morten Ø. Nielsen & Per Houmann Frederiksen, 2005. "Finite Sample Accuracy Of Integrated Volatility Estimators," Working Paper 1225, Economics Department, Queen's University.
- Andrii Babii & Eric Ghysels & Jonas Striaukas, 2022.
"Machine Learning Time Series Regressions With an Application to Nowcasting,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(3), pages 1094-1106, June.
- Andrii Babii & Eric Ghysels & Jonas Striaukas, 2020. "Machine Learning Time Series Regressions with an Application to Nowcasting," Papers 2005.14057, arXiv.org, revised Dec 2020.
- Babii, Andrii & Ghysels, Eric & Striaukas, Jonas, 2021. "Machine Learning Time Series Regressions With an Application to Nowcasting," LIDAM Reprints LFIN 2021010, Université catholique de Louvain, Louvain Finance (LFIN).
- Babii, Andrii & Ghysels, Eric & Striaukas, Jonas, 2021. "Machine Learning Time Series Regressions With an Application to Nowcasting," LIDAM Discussion Papers LFIN 2021004, Université catholique de Louvain, Louvain Finance (LFIN).
- Galvão, Ana Beatriz, 2013.
"Changes in predictive ability with mixed frequency data,"
International Journal of Forecasting, Elsevier, vol. 29(3), pages 395-410.
- Ana Beatriz Galvão, 2007. "Changes in Predictive Ability with Mixed Frequency Data," Working Papers 595, Queen Mary University of London, School of Economics and Finance.
- Louzis, Dimitrios P. & Xanthopoulos-Sisinis, Spyros & Refenes, Apostolos P., 2011. "Are realized volatility models good candidates for alternative Value at Risk prediction strategies?," MPRA Paper 30364, University Library of Munich, Germany.
- Boyao Wu & Difang Huang & Muzi Chen, 2024. "Estimating Contagion Mechanism in Global Equity Market with Time-Zone Effect," Papers 2404.04335, arXiv.org.
- Adam Clements & Yin Liao, 2014. "The role in index jumps and cojumps in forecasting stock index volatility: Evidence from the Dow Jones index," NCER Working Paper Series 101, National Centre for Econometric Research.
- Libing Fang & Baizhu Chen & Honghai Yu & Yichuo Qian, 2018. "The importance of global economic policy uncertainty in predicting gold futures market volatility: A GARCH‐MIDAS approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(3), pages 413-422, March.
- Qian, Hang, 2012. "Essays on statistical inference with imperfectly observed data," ISU General Staff Papers 201201010800003618, Iowa State University, Department of Economics.
- Pan, Zhiyuan & Zhong, Hao & Wang, Yudong & Huang, Juan, 2024. "Forecasting oil futures returns with news," Energy Economics, Elsevier, vol. 134(C).
- Hale, Galina & Lopez, Jose A., 2019.
"Monitoring banking system connectedness with big data,"
Journal of Econometrics, Elsevier, vol. 212(1), pages 203-220.
- Galina Hale & Jose A. Lopez, 2018. "Monitoring Banking System Connectedness with Big Data," Working Paper Series 2018-01, Federal Reserve Bank of San Francisco.
- Hale, Galina & Lopez, Jose A, 2023. "Monitoring Banking System Connectedness with Big Data," Santa Cruz Department of Economics, Working Paper Series qt17h5v7rj, Department of Economics, UC Santa Cruz.
- Havranek, Tomas & Zeynalov, Ayaz, 2018. "Forecasting Tourist Arrivals with Google Trends and Mixed Frequency Data," EconStor Preprints 187420, ZBW - Leibniz Information Centre for Economics.
- Georgiana-Denisa Banulescu & Bertrand Candelon & Christophe Hurlin & Sébastien Laurent, 2014. "Do We Need Ultra-High Frequency Data to Forecast Variances?," Working Papers halshs-01078158, HAL.
- Neil Shephard & Ole E. Barndorff-Nielsen & Department of Mathematical Sciences & University of Aarhus & Denmark, 2005.
"Variation, jumps, market frictions and high frequency data in financial econometrics,"
Economics Series Working Papers
240, University of Oxford, Department of Economics.
- Ole E. Barndorff-Nielsen & Neil Shephard, 2005. "Variation, jumps, market frictions and high frequency data in financial econometrics," OFRC Working Papers Series 2005fe08, Oxford Financial Research Centre.
- Ole E. Barndorff-Nielsen & Neil Shephard, 2005. "Variation, jumps, market frictions and high frequency data in financial econometrics," Economics Papers 2005-W16, Economics Group, Nuffield College, University of Oxford.
- Ghysels, Eric & Ozkan, Nazire, 2015. "Real-time forecasting of the US federal government budget: A simple mixed frequency data regression approach," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1009-1020.
- Krüger Fabian & Pohlmeier Winfried & Mokinski Frieder, 2011. "Combining Survey Forecasts and Time Series Models: The Case of the Euribor," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 231(1), pages 63-81, February.
- Foroni, Claudia & Guérin, Pierre & Marcellino, Massimiliano, 2018.
"Using low frequency information for predicting high frequency variables,"
International Journal of Forecasting, Elsevier, vol. 34(4), pages 774-787.
- Claudia Foroni & Pierre Guérin & Massimiliano Marcellino, 2015. "Using low frequency information for predicting high frequency variables," Working Paper 2015/13, Norges Bank.
- repec:lan:wpaper:3046 is not listed on IDEAS
- Aharon, David Y. & Qadan, Mahmoud, 2020. "When do retail investors pay attention to their trading platforms?," The North American Journal of Economics and Finance, Elsevier, vol. 53(C).
- Kenichiro McAlinn, 2021. "Mixed‐frequency Bayesian predictive synthesis for economic nowcasting," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(5), pages 1143-1163, November.
- Adediran, Idris A. & Swaray, Raymond, 2023. "Carbon trading amidst global uncertainty: The role of policy and geopolitical uncertainty," Economic Modelling, Elsevier, vol. 123(C).
- Chaboud, Alain P. & Chiquoine, Benjamin & Hjalmarsson, Erik & Loretan, Mico, 2010.
"Frequency of observation and the estimation of integrated volatility in deep and liquid financial markets,"
Journal of Empirical Finance, Elsevier, vol. 17(2), pages 212-240, March.
- Alain P. Chaboud & Benjamin Chiquoine & Erik Hjalmarsson & Mico Loretan, 2007. "Frequency of observation and the estimation of integrated volatility in deep and liquid financial markets," International Finance Discussion Papers 905, Board of Governors of the Federal Reserve System (U.S.).
- Alain Chaboud & Benjamin Chiquoine & Erik Hjalmarsson & Mico Loretan, 2008. "Frequency of observation and the estimation of integrated volatility in deep and liquid financial markets," BIS Working Papers 249, Bank for International Settlements.
- Chao Liang & Yin Liao & Feng Ma & Bo Zhu, 2022. "United States Oil Fund volatility prediction: the roles of leverage effect and jumps," Empirical Economics, Springer, vol. 62(5), pages 2239-2262, May.
- González, Mariano & Nave, Juan & Rubio, Gonzalo, 2018. "Macroeconomic determinants of stock market betas," Journal of Empirical Finance, Elsevier, vol. 45(C), pages 26-44.
- Matteo Mogliani & Anna Simoni, 2024. "Bayesian Bi-level Sparse Group Regressions for Macroeconomic Density Forecasting," Papers 2404.02671, arXiv.org, revised Nov 2024.
- Mengxi He & Xianfeng Hao & Yaojie Zhang & Fanyi Meng, 2021. "Forecasting stock return volatility using a robust regression model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1463-1478, December.
- Yimin Yang & Fei Jia & Haoran Li, 2023. "Estimation of Panel Data Models with Mixed Sampling Frequencies," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(3), pages 514-544, June.
- Xilong Chen & Eric Ghysels, 2011. "News--Good or Bad--and Its Impact on Volatility Predictions over Multiple Horizons," The Review of Financial Studies, Society for Financial Studies, vol. 24(1), pages 46-81, October.
- Fengler, Matthias & Okhrin, Ostap, 2012.
"Realized Copula,"
Economics Working Paper Series
1214, University of St. Gallen, School of Economics and Political Science.
- Fengler, Matthias R. & Okhrin, Ostap, 2012. "Realized copula," SFB 649 Discussion Papers 2012-034, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Elena Andreou & Eric Ghysels & Andros Kourtellos, 2013.
"Should Macroeconomic Forecasters Use Daily Financial Data and How?,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(2), pages 240-251, April.
- Elena Andreou & Eric Ghysels & Andros Kourtellos, 2010. "Should Macroeconomic Forecasters Use Daily Financial Data and How?," Working Paper series 42_10, Rimini Centre for Economic Analysis.
- Eric Ghysels & Andros Kourtellos & Elena Andreou, 2012. "Should macroeconomic forecasters use daily financial data and how?," 2012 Meeting Papers 1196, Society for Economic Dynamics.
- Elena Andreou & Eric Ghysels & Andros Kourtellos, 2010. "Should macroeconomic forecasters use daily financial data and how?," University of Cyprus Working Papers in Economics 09-2010, University of Cyprus Department of Economics.
- Byun, Suk Joon & Kim, Jun Sik, 2013. "The information content of risk-neutral skewness for volatility forecasting," Journal of Empirical Finance, Elsevier, vol. 23(C), pages 142-161.
- Nikolaus Hautsch & Lada M. Kyj & Peter Malec, 2015.
"Do High‐Frequency Data Improve High‐Dimensional Portfolio Allocations?,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(2), pages 263-290, March.
- Hautsch, Nikolaus & Kyj, Lada. M. & Malec, Peter, 2013. "Do high-frequency data improve high-dimensional portfolio allocations?," SFB 649 Discussion Papers 2013-014, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Lucia Alessi & Eric Ghysels & Luca Onorante & Richard Peach & Simon Potter, 2014.
"Central Bank Macroeconomic Forecasting During the Global Financial Crisis: The European Central Bank and Federal Reserve Bank of New York Experiences,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(4), pages 483-500, October.
- Onorante, Luca & Alessi, Lucia & Ghysels, Eric & Potter, Simon & Peach, Richard, 2014. "Central bank macroeconomic forecasting during the global financial crisis: the European Central Bank and Federal Reserve Bank of New York experiences," Working Paper Series 1688, European Central Bank.
- Luci Alessi & Eric Ghysels & Luca Onorante & Richard Peach & Simon M. Potter, 2014. "Central bank macroeconomic forecasting during the global financial crisis: the European Central Bank and Federal Reserve Bank of New York experiences," Staff Reports 680, Federal Reserve Bank of New York.
- Özer Karagedikli & Murat Özbilgin, 2019. "Mixed in New Zealand: Nowcasting Labour Markets with MIDAS," Reserve Bank of New Zealand Analytical Notes series AN2019/04, Reserve Bank of New Zealand.
- Cheng, Mingmian & Liao, Yuan & Yang, Xiye, 2023. "Uniform predictive inference for factor models with instrumental and idiosyncratic betas," Journal of Econometrics, Elsevier, vol. 237(2).
- Foroni, Claudia & Marcellino, Massimiliano & Schumacher, Christian, 2011.
"U-MIDAS: MIDAS regressions with unrestricted lag polynomials,"
Discussion Paper Series 1: Economic Studies
2011,35, Deutsche Bundesbank.
- Schumacher, Christian & Marcellino, Massimiliano & Foroni, Claudia, 2012. "U-MIDAS: MIDAS regressions with unrestricted lag polynomials," CEPR Discussion Papers 8828, C.E.P.R. Discussion Papers.
- Gu, Qinen & Li, Shaofang & Tian, Sihua & Wang, Yuyouting, 2023. "Climate, geopolitical, and energy market risk interconnectedness: Evidence from a new climate risk index," Finance Research Letters, Elsevier, vol. 58(PB).
- Lu Wang & Feng Ma & Guoshan Liu & Qiaoqi Lang, 2023. "Do extreme shocks help forecast oil price volatility? The augmented GARCH‐MIDAS approach," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(2), pages 2056-2073, April.
- Joe Hirschberg & Jenny Lye, 2021. "Estimating risk premiums for regulated firms when accounting for reference-day variation and high-order moments of return volatility," Environment Systems and Decisions, Springer, vol. 41(3), pages 455-467, September.
- Hooper, Vincent J. & Ng, Kevin & Reeves, Jonathan J., 2008. "Quarterly beta forecasting: An evaluation," International Journal of Forecasting, Elsevier, vol. 24(3), pages 480-489.
- Christopher F. Baum & Mustafa Caglayan & Oleksandr Talavera, 2010.
"On the sensitivity of firms' investment to cash flow and uncertainty,"
Oxford Economic Papers, Oxford University Press, vol. 62(2), pages 286-306, April.
- Christopher F. Baum & Mustafa Caglayan & Oleksandr Talavera, 2006. "On the Sensitivity of Firms' Investment to Cash Flow and Uncertainty," Boston College Working Papers in Economics 638, Boston College Department of Economics, revised 26 Apr 2008.
- Golosnoy, Vasyl & Hamid, Alain & Okhrin, Yarema, 2014. "The empirical similarity approach for volatility prediction," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 321-329.
- repec:hum:wpaper:sfb649dp2007-027 is not listed on IDEAS
- Lixiong Yang, 2022. "Threshold mixed data sampling (TMIDAS) regression models with an application to GDP forecast errors," Empirical Economics, Springer, vol. 62(2), pages 533-551, February.
- Drew Creal & Bernd Schwaab & Siem Jan Koopman & Andr� Lucas, 2014.
"Observation-Driven Mixed-Measurement Dynamic Factor Models with an Application to Credit Risk,"
The Review of Economics and Statistics, MIT Press, vol. 96(5), pages 898-915, December.
- Drew Creal & Bernd Schwaab & Siem Jan Koopman & Andre Lucas, 2011. "Observation Driven Mixed-Measurement Dynamic Factor Models with an Application to Credit Risk," Tinbergen Institute Discussion Papers 11-042/2/DSF16, Tinbergen Institute.
- Schwaab, Bernd & Koopman, Siem Jan & Lucas, André & Creal, Drew, 2013. "Observation driven mixed-measurement dynamic factor models with an application to credit risk," Working Paper Series 1626, European Central Bank.
- Cecilia Frale & Libero Monteforte, "undated".
"FaMIDAS: A Mixed Frequency Factor Model with MIDAS structure,"
Working Papers
3, Department of the Treasury, Ministry of the Economy and of Finance.
- Cecilia Frale & Libero Monteforte, 2011. "FaMIDAS: A Mixed Frequency Factor Model with MIDAS structure," Temi di discussione (Economic working papers) 788, Bank of Italy, Economic Research and International Relations Area.
- Andrii Babii & Jean-Pierre Florens, 2017.
"Is completeness necessary? Estimation in nonidentified linear models,"
Papers
1709.03473, arXiv.org, revised Nov 2021.
- Babii, Andrii & Florens, Jean-Pierre, 2020. "Is completeness necessary? Estimation in nonidentified linear models," TSE Working Papers 20-1091, Toulouse School of Economics (TSE).
- Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
- Vasilis Sarafidis & Tom Wansbeek, 2020. "Celebrating 40 Years of Panel Data Analysis: Past, Present and Future," Monash Econometrics and Business Statistics Working Papers 6/20, Monash University, Department of Econometrics and Business Statistics.
- Götz, Thomas B. & Hecq, Alain & Smeekes, Stephan, 2016.
"Testing for Granger causality in large mixed-frequency VARs,"
Journal of Econometrics, Elsevier, vol. 193(2), pages 418-432.
- Götz, T.B. & Hecq, A.W., 2014. "Testing for Granger causality in large mixed-frequency VARs," Research Memorandum 028, Maastricht University, Graduate School of Business and Economics (GSBE).
- Götz, T.B. & Hecq, A.W. & Smeekes, S., 2015. "Testing for Granger Causality in Large Mixed-Frequency VARs," Research Memorandum 036, Maastricht University, Graduate School of Business and Economics (GSBE).
- Götz, Thomas B. & Hecq, Alain & Smeekes, Stephan, 2015. "Testing for Granger causality in large mixed-frequency VARs," Discussion Papers 45/2015, Deutsche Bundesbank.
- Xiafei Li & Dongxin Li & Xuhui Zhang & Guiwu Wei & Lan Bai & Yu Wei, 2021. "Forecasting regular and extreme gold price volatility: The roles of asymmetry, extreme event, and jump," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1501-1523, December.
- repec:wrk:wrkemf:38 is not listed on IDEAS
- Andrii Babii & Eric Ghysels & Jonas Striaukas, 2024.
"High-Dimensional Granger Causality Tests with an Application to VIX and News,"
Journal of Financial Econometrics, Oxford University Press, vol. 22(3), pages 605-635.
- Andrii Babii & Eric Ghysels & Jonas Striaukas, 2019. "High-Dimensional Granger Causality Tests with an Application to VIX and News," Papers 1912.06307, arXiv.org, revised Feb 2021.
- Dimitrios P. Louzis & Spyros Xanthopoulos‐Sisinis & Apostolos P. Refenes, 2013.
"The Role of High‐Frequency Intra‐daily Data, Daily Range and Implied Volatility in Multi‐period Value‐at‐Risk Forecasting,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(6), pages 561-576, September.
- Louzis, Dimitrios P. & Xanthopoulos-Sisinis, Spyros & Refenes, Apostolos P., 2011. "The role of high frequency intra-daily data, daily range and implied volatility in multi-period Value-at-Risk forecasting," MPRA Paper 35252, University Library of Munich, Germany.
- Foroni, Claudia & Marcellino, Massimiliano & Stevanovic, Dalibor, 2022.
"Forecasting the Covid-19 recession and recovery: Lessons from the financial crisis,"
International Journal of Forecasting, Elsevier, vol. 38(2), pages 596-612.
- Claudia Foroni & Massimiliano Marcellino & Dalibor Stevanovic, 2020. "Forecasting the COVID-19 recession and recovery: Lessons from the financial crisis," Working Papers 20-14, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Nov 2020.
- Marcellino, Massimiliano & Foroni, Claudia & Stevanovic, Dalibor, 2020. "Forecasting the Covid-19 recession and recovery: Lessons from the financial crisis," CEPR Discussion Papers 15114, C.E.P.R. Discussion Papers.
- Claudia Foroni & Massimiliano Marcellino & Dalibor Stevanovic, 2020. "Forecasting the Covid-19 Recession and Recovery: Lessons from the Financial Crisis," CIRANO Working Papers 2020s-32, CIRANO.
- Foroni, Claudia & Marcellino, Massimiliano & Stevanović, Dalibor, 2020. "Forecasting the Covid-19 recession and recovery: lessons from the financial crisis," Working Paper Series 2468, European Central Bank.
- Tsiakas, Ilias & Zhang, Haibin, 2021. "Economic fundamentals and the long-run correlation between exchange rates and commodities," Global Finance Journal, Elsevier, vol. 49(C).
- Nuttanan Wichitaksorn, 2020. "Analyzing and Forecasting Thai Macroeconomic Data using Mixed-Frequency Approach," PIER Discussion Papers 146, Puey Ungphakorn Institute for Economic Research.
- Knotek, Edward S. & Zaman, Saeed, 2019.
"Financial nowcasts and their usefulness in macroeconomic forecasting,"
International Journal of Forecasting, Elsevier, vol. 35(4), pages 1708-1724.
- Edward S. Knotek & Saeed Zaman, 2017. "Financial Nowcasts and Their Usefulness in Macroeconomic Forecasting," Working Papers (Old Series) 1702, Federal Reserve Bank of Cleveland.
- Hanan Naser, 2015. "Estimating and forecasting Bahrain quarterly GDP growth using simple regression and factor-based methods," Empirical Economics, Springer, vol. 49(2), pages 449-479, September.
- Wang, Tianyi & Liang, Fang & Huang, Zhuo & Yan, Hong, 2022. "Do realized higher moments have information content? - VaR forecasting based on the realized GARCH-RSRK model," Economic Modelling, Elsevier, vol. 109(C).
- Bräuning, Falk & Koopman, Siem Jan, 2014.
"Forecasting macroeconomic variables using collapsed dynamic factor analysis,"
International Journal of Forecasting, Elsevier, vol. 30(3), pages 572-584.
- Falk Brauning & Siem Jan Koopman, 2012. "Forecasting Macroeconomic Variables using Collapsed Dynamic Factor Analysis," Tinbergen Institute Discussion Papers 12-042/4, Tinbergen Institute.
- Tomas Havranek & Ayaz Zeynalov, 2021.
"Forecasting tourist arrivals: Google Trends meets mixed-frequency data,"
Tourism Economics, , vol. 27(1), pages 129-148, February.
- Havranek, Tomas & Zeynalov, Ayaz, 2018. "Forecasting Tourist Arrivals: Google Trends Meets Mixed Frequency Data," MPRA Paper 90205, University Library of Munich, Germany.
- C. Emre Alper & Salih Fendoglu & Burak Saltoglu, 2009. "MIDAS Volatility Forecast Performance Under Market Stress: Evidence from Emerging and Developed Stock Markets," Working Papers 2009/04, Bogazici University, Department of Economics.
- Dewandaru, Ginanjar & Masih, Rumi & Bacha, Obiyathulla Ismath & Masih, A. Mansur. M., 2015.
"Combining momentum, value, and quality for the Islamic equity portfolio: Multi-style rotation strategies using augmented Black Litterman factor model,"
Pacific-Basin Finance Journal, Elsevier, vol. 34(C), pages 205-232.
- Dewandaru, Ginanjar & Masih, Rumi & Bacha, Obiyathulla & Masih, A. Mansur M., 2014. "Combining Momentum, Value, and Quality for the Islamic Equity Portfolio: Multi-style Rotation Strategies using Augmented Black Litterman Factor Model," MPRA Paper 56965, University Library of Munich, Germany.
- J. Isaac Miller & Xi Wang, 2016. "Implementing Residual-Based KPSS Tests for Cointegration with Data Subject to Temporal Aggregation and Mixed Sampling Frequencies," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(6), pages 810-824, November.
- Gregory Bauer & Keith Vorkink, 2007. "Multivariate Realized Stock Market Volatility," Staff Working Papers 07-20, Bank of Canada.
- Halbleib, Roxana & Dimitriadis, Timo, 2019. "How informative is high-frequency data for tail risk estimation and forecasting? An intrinsic time perspectice," VfS Annual Conference 2019 (Leipzig): 30 Years after the Fall of the Berlin Wall - Democracy and Market Economy 203669, Verein für Socialpolitik / German Economic Association.
- Cláudia Duarte, 2015. "Covariate-augmented unit root tests with mixed-frequency data," Working Papers w201507, Banco de Portugal, Economics and Research Department.
- Francis X. Diebold & Kamil Yılmaz, 2007.
"Macroeconomic Volatility and Stock Market Volatility,World-Wide,"
Koç University-TUSIAD Economic Research Forum Working Papers
0711, Koc University-TUSIAD Economic Research Forum.
- Francis X. Diebold & Kamil Yilmaz, 2008. "Macroeconomic Volatility and Stock Market Volatility, World-Wide," PIER Working Paper Archive 08-031, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Francis X. Diebold & Kamil Yilmaz, 2008. "Macroeconomic Volatility and Stock Market Volatility, Worldwide," NBER Working Papers 14269, National Bureau of Economic Research, Inc.
- Yaojie Zhang & Yudong Wang & Feng Ma & Yu Wei, 2022. "To jump or not to jump: momentum of jumps in crude oil price volatility prediction," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-31, December.
- González-Sánchez, Mariano & Nave, Juan & Rubio, Gonzalo, 2020. "Effects of uncertainty and risk aversion on the exposure of investment-style factor returns to real activity," Research in International Business and Finance, Elsevier, vol. 53(C).
- Das, Sonali & Demirer, Riza & Gupta, Rangan & Mangisa, Siphumlile, 2019.
"The effect of global crises on stock market correlations: Evidence from scalar regressions via functional data analysis,"
Structural Change and Economic Dynamics, Elsevier, vol. 50(C), pages 132-147.
- Sonali Das & Riza Demirer & Rangan Gupta & Siphumlile Mangisa, 2019. "The Effect of Global Crises on Stock Market Correlations: Evidence from Scalar Regressions via Functional Data Analysis," Working Papers 201908, University of Pretoria, Department of Economics.
- MAMATZAKIS, emmanuel & MAMATZAKIS, E, 2022.
"Understanding the impact of travel on wellbeing: evidence for Great Britain during the pandemic,"
MPRA Paper
112974, University Library of Munich, Germany.
- MAMATZAKIS, emmanuel & MAMATZAKIS, E, 2022. "Understanding the impact of travel on wellbeing: evidence for Great Britain during the pandemic," MPRA Paper 121782, University Library of Munich, Germany.
- Nikolaus Hautsch & Fuyu Yang, 2014. "Bayesian Stochastic Search for the Best Predictors: Nowcasting GDP Growth," University of East Anglia Applied and Financial Economics Working Paper Series 056, School of Economics, University of East Anglia, Norwich, UK..
- Layna Mosley & Victoria Paniagua & Erik Wibbels, 2020. "Moving markets? Government bond investors and microeconomic policy changes," Economics and Politics, Wiley Blackwell, vol. 32(2), pages 197-249, July.
- Amir Safari & Detlef Seese, 2010. "Behavior of realized volatility and correlation in exchange markets," International Econometric Review (IER), Econometric Research Association, vol. 2(2), pages 73-96, September.
- Nguyen, Hoang & Javed, Farrukh, 2023.
"Dynamic relationship between Stock and Bond returns: A GAS MIDAS copula approach,"
Journal of Empirical Finance, Elsevier, vol. 73(C), pages 272-292.
- Nguyen, Hoang & Javed, Farrukh, 2021. "Dynamic relationship between Stock and Bond returns: A GAS MIDAS copula approach," Working Papers 2021:15, Örebro University, School of Business.
- Barndorff-Nielsen, Ole E. & Graversen, Svend Erik & Jacod, Jean & Shephard, Neil, 2006.
"Limit Theorems For Bipower Variation In Financial Econometrics,"
Econometric Theory, Cambridge University Press, vol. 22(4), pages 677-719, August.
- Ole E. Barndorff-Nielsen & Sven Erik Graversen & Jean Jacod & Neil Shephard, 2005. "Limit theorems for bipower variation in financial econometrics," Economics Papers 2005-W06, Economics Group, Nuffield College, University of Oxford.
- Ole E. Barndorff-Nielsen & Sven Erik Graversen & Jean Jacod & Neil Shephard, 2005. "Limit theorems for bipower variation in financial econometrics," OFRC Working Papers Series 2005fe09, Oxford Financial Research Centre.
- Michael P. Clements & Ana Beatriz Galvão, 2014. "Measuring Macroeconomic Uncertainty: US Inflation and Output Growth," ICMA Centre Discussion Papers in Finance icma-dp2014-04, Henley Business School, University of Reading.
- Qifa Xu & Lu Chen & Cuixia Jiang & Yezheng Liu, 2022. "Forecasting expected shortfall and value at risk with a joint elicitable mixed data sampling model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 407-421, April.
- Chang, Tsangyao & Hsu, Chen-Min & Chen, Sheng-Tung & Wang, Mei-Chih & Wu, Cheng-Feng, 2023. "Revisiting economic growth and CO2 emissions nexus in Taiwan using a mixed-frequency VAR model," Economic Analysis and Policy, Elsevier, vol. 79(C), pages 319-342.
- Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2005.
"There is a risk-return trade-off after all,"
Journal of Financial Economics, Elsevier, vol. 76(3), pages 509-548, June.
- Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2003. "There is a Risk-Return Tradeoff After All," CIRANO Working Papers 2003s-26, CIRANO.
- Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "There is a Risk-Return Tradeoff After All," CIRANO Working Papers 2004s-24, CIRANO.
- Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "There is a Risk-Return Tradeoff After All," NBER Working Papers 10913, National Bureau of Economic Research, Inc.
- Proelss, Juliane & Schweizer, Denis & Seiler, Volker, 2020.
"The economic importance of rare earth elements volatility forecasts,"
International Review of Financial Analysis, Elsevier, vol. 71(C).
- Juliane Proelss & Denis Schweizer & Volker Seiler, 2019. "The economic importance of rare earth elements volatility forecasts," Post-Print hal-02983233, HAL.
- Anthony S. Tay, 2006. "Mixing Frequencies : Stock Returns as a Predictor of Real Output Growth," Macroeconomics Working Papers 22480, East Asian Bureau of Economic Research.
- Chao Liang & Yan Li & Feng Ma & Yaojie Zhang, 2022. "Forecasting international equity market volatility: A new approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(7), pages 1433-1457, November.
- Naimoli, Antonio & Storti, Giuseppe, 2019.
"Heterogeneous component multiplicative error models for forecasting trading volumes,"
International Journal of Forecasting, Elsevier, vol. 35(4), pages 1332-1355.
- Naimoli, Antonio & Storti, Giuseppe, 2019. "Heterogeneous component multiplicative error models for forecasting trading volumes," MPRA Paper 93802, University Library of Munich, Germany.
- Ralf Becker & Adam Clements, 2007. "Forecasting stock market volatility conditional on macroeconomic conditions," NCER Working Paper Series 18, National Centre for Econometric Research.
- Michael Zhemkov, 2021.
"Nowcasting Russian GDP using forecast combination approach,"
International Economics, CEPII research center, issue 168, pages 10-24.
- Zhemkov, Michael, 2021. "Nowcasting Russian GDP using forecast combination approach," International Economics, Elsevier, vol. 168(C), pages 10-24.
- Fengler, Matthias R. & Okhrin, Ostap, 2016. "Managing risk with a realized copula parameter," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 131-152.
- Warmedinger, Thomas & Paredes, Joan & Asimakopoulos, Stylianos, 2013. "Forecasting fiscal time series using mixed frequency data," Working Paper Series 1550, European Central Bank.
- Asai, Manabu & Brugal, Ivan, 2013. "Forecasting volatility via stock return, range, trading volume and spillover effects: The case of Brazil," The North American Journal of Economics and Finance, Elsevier, vol. 25(C), pages 202-213.
- Foroni, Claudia & Ravazzolo, Francesco & Rossini, Luca, 2023.
"Are low frequency macroeconomic variables important for high frequency electricity prices?,"
Economic Modelling, Elsevier, vol. 120(C).
- Claudia Foroni & Francesco Ravazzolo & Luca Rossini, 2020. "Are low frequency macroeconomic variables important for high frequency electricity prices?," Papers 2007.13566, arXiv.org, revised Dec 2022.
- Louzis, Dimitrios P. & Xanthopoulos-Sisinis, Spyros & Refenes, Apostolos P., 2014. "Realized volatility models and alternative Value-at-Risk prediction strategies," Economic Modelling, Elsevier, vol. 40(C), pages 101-116.
- Ghysels, Eric & Hill, Jonathan B. & Motegi, Kaiji, 2020. "Testing a large set of zero restrictions in regression models, with an application to mixed frequency Granger causality," Journal of Econometrics, Elsevier, vol. 218(2), pages 633-654.
- Iacopini, Matteo & Poon, Aubrey & Rossini, Luca & Zhu, Dan, 2023.
"Bayesian mixed-frequency quantile vector autoregression: Eliciting tail risks of monthly US GDP,"
Journal of Economic Dynamics and Control, Elsevier, vol. 157(C).
- Matteo Iacopini & Aubrey Poon & Luca Rossini & Dan Zhu, 2022. "Bayesian Mixed-Frequency Quantile Vector Autoregression: Eliciting tail risks of Monthly US GDP," Papers 2209.01910, arXiv.org.
- Claudia Foroni & Massimiliano Marcellino, 2013.
"A survey of econometric methods for mixed-frequency data,"
Economics Working Papers
ECO2013/02, European University Institute.
- Claudia Foroni & Massimiliano Marcellino, 2013. "A survey of econometric methods for mixed-frequency data," Working Paper 2013/06, Norges Bank.
- Lu, Xinjie & Ma, Feng & Wang, Jiqian & Wang, Jianqiong, 2020. "Examining the predictive information of CBOE OVX on China’s oil futures volatility: Evidence from MS-MIDAS models," Energy, Elsevier, vol. 212(C).
- Torben G. Andersen & Tim Bollerslev & Peter Christoffersen & Francis X. Diebold, 2007.
"Practical Volatility and Correlation Modeling for Financial Market Risk Management,"
NBER Chapters, in: The Risks of Financial Institutions, pages 513-544,
National Bureau of Economic Research, Inc.
- Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Practical Volatility and Correlation Modeling for Financial Market Risk Management," PIER Working Paper Archive 05-007, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Practical Volatility and Correlation Modeling for Financial Market Risk Management," NBER Working Papers 11069, National Bureau of Economic Research, Inc.
- Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2005. "Practical volatility and correlation modeling for financial market risk management," CFS Working Paper Series 2005/02, Center for Financial Studies (CFS).
- Shuichi Nagata, 2012. "Consistent Estimation of Integrated Volatility Using Intraday Absolute Returns for SV Jump Diffusion Processes," Economics Bulletin, AccessEcon, vol. 32(1), pages 306-314.
- Becker, Ralf & Clements, Adam E. & White, Scott I., 2007. "Does implied volatility provide any information beyond that captured in model-based volatility forecasts?," Journal of Banking & Finance, Elsevier, vol. 31(8), pages 2535-2549, August.
- Yun-Shi Dai & Peng-Fei Dai & Wei-Xing Zhou, 2024. "The impact of geopolitical risk on the international agricultural market: Empirical analysis based on the GJR-GARCH-MIDAS model," Papers 2404.01641, arXiv.org.
- Wenting Liu & Zhaozhong Gui & Guilin Jiang & Lihua Tang & Lichun Zhou & Wan Leng & Xulong Zhang & Yujiang Liu, 2023. "Stock Volatility Prediction Based on Transformer Model Using Mixed-Frequency Data," Papers 2309.16196, arXiv.org.
- Qian Chen & Xiang Gao & Shan Xie & Li Sun & Shuairu Tian & Shigeyuki Hamori, 2021. "On the Predictability of China Macro Indicator with Carbon Emissions Trading," Energies, MDPI, vol. 14(5), pages 1-24, February.
- Galvão, Ana Beatriz, 2013.
"Changes in predictive ability with mixed frequency data,"
International Journal of Forecasting, Elsevier, vol. 29(3), pages 395-410.
- Ana Beatriz Galvão, 2007. "Changes in Predictive Ability with Mixed Frequency Data," Working Papers 595, Queen Mary University of London, School of Economics and Finance.
- Ana Beatriz Galvão, 2007. "Changes in Predictive Ability with Mixed Frequency Data," Working Papers 595, Queen Mary University of London, School of Economics and Finance.
- Henker, Thomas & Husodo, Zaäfri A., 2010. "Noise and efficient variance in the Indonesia Stock Exchange," Pacific-Basin Finance Journal, Elsevier, vol. 18(2), pages 199-216, April.
- Härdle, Wolfgang Karl & Mungo, Julius, 2007. "Long memory persistence in the factor of Implied volatility dynamics," SFB 649 Discussion Papers 2007-027, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Andreou, Elena, 2016. "On the use of high frequency measures of volatility in MIDAS regressions," CEPR Discussion Papers 11307, C.E.P.R. Discussion Papers.
- Clements, Michael P. & Galvão, Ana Beatriz & Kim, Jae H., 2008.
"Quantile forecasts of daily exchange rate returns from forecasts of realized volatility,"
Journal of Empirical Finance, Elsevier, vol. 15(4), pages 729-750, September.
- Clements, Michael P. & Galvao, Ana Beatriz & Kim, Jae H., 2006. "Quantile Forecasts of Daily Exchange Rate Returns from Forecasts of Realized Volatility," Economic Research Papers 269747, University of Warwick - Department of Economics.
- Clements, Michael P. & Galvão, Ana Beatriz & Kim, Jae H., 2006. "Quantile Forecasts of Daily Exchange Rate Returns from Forecasts of Realized Volatility," The Warwick Economics Research Paper Series (TWERPS) 777, University of Warwick, Department of Economics.
- Ramazan Gencay & Nikola Gradojevic & Faruk Selcuk & Brandon Whitcher, 2010.
"Asymmetry of information flow between volatilities across time scales,"
Quantitative Finance, Taylor & Francis Journals, vol. 10(8), pages 895-915.
- Ramazan Gencay & Faruk Selcuk, 2004. "Asymmetry of Information Flow Between Volatilities Across Time Scales," Econometric Society 2004 North American Winter Meetings 90, Econometric Society.
- Ramazan Gencay & Nikola Gradojevic & Faruk Selcuk & Brandon Whitcher, 2009. "Asymmetry of Information Flow Between Volatilities Across Time Scales," Working Paper series 27_09, Rimini Centre for Economic Analysis.
- Denisa Banulescu-Radu & Christophe Hurlin & Bertrand Candelon & Sébastien Laurent, 2016.
"Do We Need High Frequency Data to Forecast Variances?,"
Annals of Economics and Statistics, GENES, issue 123-124, pages 135-174.
- Denisa Banulescu-Radu & Christophe Hurlin & Bertrand Candelon & Sébastien Laurent, 2016. "Do We Need High Frequency Data to Forecast Variances?," Post-Print hal-01448237, HAL.
- Adam Clements & Ayesha Scott & Annastiina Silvennoinen, 2013. "On the Benefits of Equicorrelation for Portfolio Allocation," NCER Working Paper Series 99, National Centre for Econometric Research.
- Pedregal, Diego J. & Pérez, Javier J., 2010.
"Should quarterly government finance statistics be used for fiscal surveillance in Europe?,"
International Journal of Forecasting, Elsevier, vol. 26(4), pages 794-807, October.
- Pérez, Javier J. & Pedregal, Diego J., 2008. "Should quarterly government finance statistics be used for fiscal surveillane in Europe?," Working Paper Series 937, European Central Bank.
- Fang, Tong & Lee, Tae-Hwy & Su, Zhi, 2020.
"Predicting the long-term stock market volatility: A GARCH-MIDAS model with variable selection,"
Journal of Empirical Finance, Elsevier, vol. 58(C), pages 36-49.
- Tong Fang & Tae-Hwy Lee & Zhi Su, 2020. "Predicting the Long-term Stock Market Volatility: A GARCH-MIDAS Model with Variable Selection," Working Papers 202009, University of California at Riverside, Department of Economics.
- Audrino, Francesco, 2014.
"Forecasting correlations during the late-2000s financial crisis: The short-run component, the long-run component, and structural breaks,"
Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 43-60.
- Audrino, Francesco, 2011. "Forecasting correlations during the late-2000s financial crisis: short-run component, long-run component, and structural breaks," Economics Working Paper Series 1112, University of St. Gallen, School of Economics and Political Science.
- Talha Omer & Kristofer Månsson & Pär Sjölander & B. M. Golam Kibria, 2024. "Improved Breitung and Roling estimator for mixed-frequency models with application to forecasting inflation rates," Statistical Papers, Springer, vol. 65(5), pages 3303-3325, July.
- Valadkhani, Abbas & Smyth, Russell, 2017. "How do daily changes in oil prices affect US monthly industrial output?," Energy Economics, Elsevier, vol. 67(C), pages 83-90.
- Sarun Kamolthip, 2021.
"Macroeconomic Forecasting with LSTM and Mixed Frequency Time Series Data,"
PIER Discussion Papers
165, Puey Ungphakorn Institute for Economic Research.
- Sarun Kamolthip, 2021. "Macroeconomic forecasting with LSTM and mixed frequency time series data," Papers 2109.13777, arXiv.org.
- Hideyuki Takamizawa, 2015.
"Predicting Interest Rate Volatility Using Information on the Yield Curve,"
International Review of Finance, International Review of Finance Ltd., vol. 15(3), pages 347-386, September.
- Takamizawa, Hideyuki & 髙見澤, 秀幸, 2012. "Predicting Interest Rate Volatility: Using Information on the Yield Curve," Working Paper Series G-1-3, Hitotsubashi University Center for Financial Research.
- Takamizawa, Hideyuki & 髙見澤, 秀幸, 2015. "Predicting Interest Rate Volatility: Using Information on the Yield Curve," Working Paper Series G-1-9, Hitotsubashi University Center for Financial Research.
- Ryan T. Ball & Lindsey Gallo & Eric Ghysels, 2019. "Tilting the evidence: the role of firm-level earnings attributes in the relation between aggregated earnings and gross domestic product," Review of Accounting Studies, Springer, vol. 24(2), pages 570-592, June.
- Zea Bermudez, Patrícia de & Rue, Havard, 2021. "Integrated nested Laplace approximations for threshold stochastic volatility models," DES - Working Papers. Statistics and Econometrics. WS 31804, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Qu, Hui & Chen, Wei & Niu, Mengyi & Li, Xindan, 2016. "Forecasting realized volatility in electricity markets using logistic smooth transition heterogeneous autoregressive models," Energy Economics, Elsevier, vol. 54(C), pages 68-76.
- Huang, Xiaozhou & Wang, Yubao & Song, Juan, 2023. "The Chinese oil futures volatility: Evidence from high-low estimator information," Finance Research Letters, Elsevier, vol. 56(C).
- Henryk Gurgul & Roland Mestel & Robert Syrek, 2017. "MIDAS models in banking sector – systemic risk comparison," Managerial Economics, AGH University of Science and Technology, Faculty of Management, vol. 18(2), pages 165-181.
- Foroni, Claudia & Marcellino, Massimiliano, 2014. "A comparison of mixed frequency approaches for nowcasting Euro area macroeconomic aggregates," International Journal of Forecasting, Elsevier, vol. 30(3), pages 554-568.
- Zhang, Yue-Jun & Wang, Jin-Li, 2019. "Do high-frequency stock market data help forecast crude oil prices? Evidence from the MIDAS models," Energy Economics, Elsevier, vol. 78(C), pages 192-201.
- Jonathan J. Reeves & Xuan Xie, 2014. "Forecasting stock return volatility at the quarterly frequency: an evaluation of time series approaches," Applied Financial Economics, Taylor & Francis Journals, vol. 24(5), pages 347-356, March.
- Murat Körs & Mehmet Baha Karan, 2023. "Stock exchange volatility forecasting under market stress with MIDAS regression," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(1), pages 295-306, January.
- Clements, Michael P. & Galvao, Ana Beatriz, 2006.
"Macroeconomic Forecasting with Mixed Frequency Data: Forecasting US output growth and inflation,"
Economic Research Papers
269743, University of Warwick - Department of Economics.
- Clements, Michael P & Galvão, Ana Beatriz, 2006. "Macroeconomic Forecasting with Mixed Frequency Data : Forecasting US output growth and inflation," The Warwick Economics Research Paper Series (TWERPS) 773, University of Warwick, Department of Economics.
- Cheng, Ai-Ru & Jahan-Parvar, Mohammad R., 2014. "Risk–return trade-off in the pacific basin equity markets," Emerging Markets Review, Elsevier, vol. 18(C), pages 123-140.
- Bonino-Gayoso, Nicolás & García-Hiernaux, Alfredo, 2019. "TF-MIDAS: a new mixed-frequency model to forecast macroeconomic variables," MPRA Paper 93366, University Library of Munich, Germany.
- Bandi, Federico M. & Russell, Jeffrey R. & Yang, Chen, 2008. "Realized volatility forecasting and option pricing," Journal of Econometrics, Elsevier, vol. 147(1), pages 34-46, November.
- Cláudia Duarte, 2014. "Autoregressive augmentation of MIDAS regressions," Working Papers w201401, Banco de Portugal, Economics and Research Department.
- Sarah Goldman & Virginia Zhelyazkova, 2023. "CO2 Emissions and GDP: A Revisited Kuznets Curve Version via a Panel Threshold MIDAS-VAR Model in Europe for a Recent Period," Economic Research Guardian, Mutascu Publishing, vol. 13(2), pages 82-99, December.
- Eric Ghysels & Alberto Plazzi & Rossen Valkanov, 2007. "Valuation in US Commercial Real Estate," European Financial Management, European Financial Management Association, vol. 13(3), pages 472-497, June.
- Degiannakis, Stavros & Filis, George, 2023.
"Oil price assumptions for macroeconomic policy,"
Energy Economics, Elsevier, vol. 117(C).
- Degiannakis, Stavros & Filis, George, 2020. "Oil price assumptions for macroeconomic policy," MPRA Paper 100705, University Library of Munich, Germany.
- Stankevich, Ivan, 2020. "Comparison of macroeconomic indicators nowcasting methods: Russian GDP case," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 59, pages 113-127.
- Ana Beatriz Galvão & Michael Owyang, 2022.
"Forecasting low‐frequency macroeconomic events with high‐frequency data,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(7), pages 1314-1333, November.
- Ana B. Galvão & Michael T. Owyang, 2020. "Forecasting Low Frequency Macroeconomic Events with High Frequency Data," Working Papers 2020-028, Federal Reserve Bank of St. Louis, revised Apr 2022.
- Douglas G. Santos & Flavio A. Ziegelmann, 2014. "Volatility Forecasting via MIDAS, HAR and their Combination: An Empirical Comparative Study for IBOVESPA," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(4), pages 284-299, July.
- Ghysels, Eric & Guérin, Pierre & Marcellino, Massimiliano, 2014.
"Regime switches in the risk–return trade-off,"
Journal of Empirical Finance, Elsevier, vol. 28(C), pages 118-138.
- Ghysels, Eric & Marcellino, Massimiliano, 2013. "Regime Switches in the Risk-Return Trade-off," CEPR Discussion Papers 9698, C.E.P.R. Discussion Papers.
- Eric Ghysels & Pierre Guérin & Massimiliano Marcellino, 2013. "Regime Switches in the Risk-Return Trade-Off," Staff Working Papers 13-51, Bank of Canada.
- Foroni, Claudia & Marcellino, Massimiliano & Stevanović, Dalibor, 2018.
"Mixed frequency models with MA components,"
Discussion Papers
02/2018, Deutsche Bundesbank.
- Foroni, Claudia & Marcellino, Massimiliano & Stevanović, Dalibor, 2018. "Mixed frequency models with MA components," Working Paper Series 2206, European Central Bank.
- Emre Alper, C. & Fendoglu, Salih & Saltoglu, Burak, 2012. "MIDAS volatility forecast performance under market stress: Evidence from emerging stock markets," Economics Letters, Elsevier, vol. 117(2), pages 528-532.
- Tim Bollerslev & Benjamin Hood & John Huss & Lasse Heje Pedersen, 2018.
"Risk Everywhere: Modeling and Managing Volatility,"
The Review of Financial Studies, Society for Financial Studies, vol. 31(7), pages 2729-2773.
- Pedersen, Lasse Heje & Bollerslev, Tim & Hood, Benjamin & Huss, John, 2018. "Risk Everywhere: Modeling and Managing Volatility," CEPR Discussion Papers 12687, C.E.P.R. Discussion Papers.
- Duarte, Cláudia & Rodrigues, Paulo M.M. & Rua, António, 2017. "A mixed frequency approach to the forecasting of private consumption with ATM/POS data," International Journal of Forecasting, Elsevier, vol. 33(1), pages 61-75.
- Ghysels, Eric & Sinko, Arthur, 2011. "Volatility forecasting and microstructure noise," Journal of Econometrics, Elsevier, vol. 160(1), pages 257-271, January.
- Baur, Dirk G. & Dimpfl, Thomas, 2016. "Googling gold and mining bad news," Resources Policy, Elsevier, vol. 50(C), pages 306-311.
- Claudia FORONI & Massimiliano MARCELLINO, 2012. "A Comparison of Mixed Frequency Approaches for Modelling Euro Area Macroeconomic Variables," Economics Working Papers ECO2012/07, European University Institute.
- Chun Liu & John M. Maheu, 2008.
"Are There Structural Breaks in Realized Volatility?,"
Journal of Financial Econometrics, Oxford University Press, vol. 6(3), pages 326-360, Summer.
- Chun Liu & John M Maheu, 2007. "Are there Structural Breaks in Realized Volatility?," Working Papers tecipa-304, University of Toronto, Department of Economics.
- Anthony S. Tay, 2007. "Financial Variables as Predictors of Real Output Growth," Development Economics Working Papers 22482, East Asian Bureau of Economic Research.
- Corsi, Fulvio & Pirino, Davide & Renò, Roberto, 2010.
"Threshold bipower variation and the impact of jumps on volatility forecasting,"
Journal of Econometrics, Elsevier, vol. 159(2), pages 276-288, December.
- Fulvio Corsi & Davide Pirino & Roberto Reno', 2010. "Threshold Bipower Variation and the Impact of Jumps on Volatility Forecasting," LEM Papers Series 2010/11, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
- Fulvio Corsi & Davide Pirino & Roberto Renò, 2010. "Threshold bipower variation and the impact of jumps on volatility forecasting," Post-Print hal-00741630, HAL.
- Maheu, John M. & McCurdy, Thomas H., 2011.
"Do high-frequency measures of volatility improve forecasts of return distributions?,"
Journal of Econometrics, Elsevier, vol. 160(1), pages 69-76, January.
- John M Maheu & Thomas H McCurdy, 2008. "Do high-frequency measures of volatility improve forecasts of return distributions?," Working Papers tecipa-324, University of Toronto, Department of Economics.
- John M. Maheu & Thomas H. McCurdy, 2009. "Do High-Frequency Measures of Volatility Improve Forecasts of Return Distributions?," Working Paper series 19_09, Rimini Centre for Economic Analysis.
- Serdengeçti, Süleyman & Sensoy, Ahmet & Nguyen, Duc Khuong, 2021.
"Dynamics of return and liquidity (co) jumps in emerging foreign exchange markets,"
Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 73(C).
- Suleyman Serdengeçti & Ahmet Sensoy & Duc Khuong Nguyen, 2020. "Dynamics of Return and Liquidity (Co)Jumps in Emerging Foreign Exchange Markets," Working Papers 2020-006, Department of Research, Ipag Business School.
- Serdengecti, Suleyman & Sensoy, Ahmet & Nguyen, Duc Khuong, 2020. "Dynamics of Return and Liquidity (Co)Jumps in Emerging Foreign Exchange Markets," MPRA Paper 105162, University Library of Munich, Germany, revised Jan 2021.
- Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005.
"Volatility Forecasting,"
PIER Working Paper Archive
05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2005. "Volatility forecasting," CFS Working Paper Series 2005/08, Center for Financial Studies (CFS).
- Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," NBER Working Papers 11188, National Bureau of Economic Research, Inc.
- Knotek, Edward S. & Zaman, Saeed, 2023.
"Real-time density nowcasts of US inflation: A model combination approach,"
International Journal of Forecasting, Elsevier, vol. 39(4), pages 1736-1760.
- Edward Knotek & Saeed Zaman, 2020. "Real-time density nowcasts of US inflation: a model-combination approach," Working Papers 2015, University of Strathclyde Business School, Department of Economics.
- Edward S. Knotek & Saeed Zaman, 2020. "Real-Time Density Nowcasts of US Inflation: A Model-Combination Approach," Working Papers 20-31, Federal Reserve Bank of Cleveland.
- Bhanu Pratap & Nalin Priyaranjan, 2023. "Macroeconomic effects of uncertainty: a Google trends-based analysis for India," Empirical Economics, Springer, vol. 65(4), pages 1599-1625, October.
- D. Schneller & S. Heiden & M. Heiden & A. Hamid, 2018. "Home is Where You Know Your Volatility – Local Investor Sentiment and Stock Market Volatility," German Economic Review, Verein für Socialpolitik, vol. 19(2), pages 209-236, May.
- Tian, Fengping & Yang, Ke & Chen, Langnan, 2017. "Realized volatility forecasting of agricultural commodity futures using the HAR model with time-varying sparsity," International Journal of Forecasting, Elsevier, vol. 33(1), pages 132-152.
- Ankargren, Sebastian & Jonéus, Paulina, 2021.
"Simulation smoothing for nowcasting with large mixed-frequency VARs,"
Econometrics and Statistics, Elsevier, vol. 19(C), pages 97-113.
- Sebastian Ankargren & Paulina Jon'eus, 2019. "Simulation smoothing for nowcasting with large mixed-frequency VARs," Papers 1907.01075, arXiv.org.
- Ralf Becker & Adam Clements & Robert O'Neill, 2010.
"A Cholesky-MIDAS model for predicting stock portfolio volatility,"
Centre for Growth and Business Cycle Research Discussion Paper Series
149, Economics, The University of Manchester.
- Ralf Becker & Adam Clements & Robert O'Neill, 2010. "A Cholesky-MIDAS model for predicting stock portfolio volatility," NCER Working Paper Series 60, National Centre for Econometric Research.
- Michael P. Clements & Ana Beatriz Galvao, 2009.
"Forecasting US output growth using leading indicators: an appraisal using MIDAS models,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(7), pages 1187-1206.
- Michael P. Clements & Ana Beatriz Galvão, 2009. "Forecasting US output growth using leading indicators: an appraisal using MIDAS models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(7), pages 1187-1206, November.
- Manabu Asai, 2013. "Heterogeneous Asymmetric Dynamic Conditional Correlation Model with Stock Return and Range," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(5), pages 469-480, August.
- Erik Kole & Thijs Markwat & Anne Opschoor & Dick van Dijk, 2017.
"Forecasting Value-at-Risk under Temporal and Portfolio Aggregation,"
Journal of Financial Econometrics, Oxford University Press, vol. 15(4), pages 649-677.
- Erik Kole & Thijs Markwat & Anne Opschoor & Dick van Dijk, 2015. "Forecasting Value-at-Risk under Temporal and Portfolio Aggregation," Tinbergen Institute Discussion Papers 15-140/III, Tinbergen Institute, revised 19 Apr 2017.
- Alejandro Fernández Cerezo, 2023. "A supply-side GDP nowcasting model," Economic Bulletin, Banco de España, issue 2023/Q1.
- Andrew J. Patton & Tarun Ramadorai, 2013.
"On the High-Frequency Dynamics of Hedge Fund Risk Exposures,"
Journal of Finance, American Finance Association, vol. 68(2), pages 597-635, April.
- Patton, Andrew, 2011. "On the High-Frequency Dynamics of Hedge Fund Risk Exposures," CEPR Discussion Papers 8479, C.E.P.R. Discussion Papers.
- Andrii Babii & Eric Ghysels & Jonas Striaukas, 2024. "Econometrics of machine learning methods in economic forecasting," Chapters, in: Michael P. Clements & Ana Beatriz Galvão (ed.), Handbook of Research Methods and Applications in Macroeconomic Forecasting, chapter 10, pages 246-273, Edward Elgar Publishing.
- Khoo, Joye & Cheung, Adrian (Wai Kong), 2021. "Does geopolitical uncertainty affect corporate financing? Evidence from MIDAS regression," Global Finance Journal, Elsevier, vol. 47(C).
- Andersen, Torben G. & Bollerslev, Tim & Meddahi, Nour, 2011. "Realized volatility forecasting and market microstructure noise," Journal of Econometrics, Elsevier, vol. 160(1), pages 220-234, January.
- Bai, Yiyi & Okullo, Samuel J., 2023. "Drivers and pass-through of the EU ETS price: Evidence from the power sector," Energy Economics, Elsevier, vol. 123(C).
- Wing Hong Chan & Ranjini Jha & Madhu Kalimipalli, 2009. "The Economic Value Of Using Realized Volatility In Forecasting Future Implied Volatility," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 32(3), pages 231-259, September.
- Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
- Alper, C. Emre & Fendoglu, Salih & Saltoglu, Burak, 2008. "Forecasting Stock Market Volatilities Using MIDAS Regressions: An Application to the Emerging Markets," MPRA Paper 7460, University Library of Munich, Germany.
- Andrii Babii & Eric Ghysels & Jonas Striaukas, 2024.
"Econometrics of machine learning methods in economic forecasting,"
Chapters, in: Michael P. Clements & Ana Beatriz Galvão (ed.), Handbook of Research Methods and Applications in Macroeconomic Forecasting, chapter 10, pages 246-273,
Edward Elgar Publishing.
- Andrii Babii & Eric Ghysels & Jonas Striaukas, 2023. "Econometrics of Machine Learning Methods in Economic Forecasting," Papers 2308.10993, arXiv.org.
- El-Shagi, Makram, 2016. "Much ado about nothing: Sovereign ratings and government bond yields in the OECD," IWH Discussion Papers 22/2016, Halle Institute for Economic Research (IWH).
- Ekaterina Smetanina, 2017. "Real-Time GARCH," Journal of Financial Econometrics, Oxford University Press, vol. 15(4), pages 561-601.
- Lindblad, Annika, 2017. "Sentiment indicators and macroeconomic data as drivers for low-frequency stock market volatility," MPRA Paper 80266, University Library of Munich, Germany.
- Leon, Angel & Nave, Juan M. & Rubio, Gonzalo, 2007. "The relationship between risk and expected return in Europe," Journal of Banking & Finance, Elsevier, vol. 31(2), pages 495-512, February.
- Jad Beyhum & Jonas Striaukas, 2023. "Factor-augmented sparse MIDAS regressions with an application to nowcasting," Papers 2306.13362, arXiv.org, revised Nov 2024.
- J. Isaac Miller, 2014.
"Mixed-frequency Cointegrating Regressions with Parsimonious Distributed Lag Structures,"
Journal of Financial Econometrics, Oxford University Press, vol. 12(3), pages 584-614.
- J. Isaac Miller, 2012. "Mixed-frequency Cointegrating Regressions with Parsimonious Distributed Lag Structures," Working Papers 1211, Department of Economics, University of Missouri.
- Clements, Michael P. & Galvão, Ana Beatriz, 2017. "Model and survey estimates of the term structure of US macroeconomic uncertainty," International Journal of Forecasting, Elsevier, vol. 33(3), pages 591-604.
- Anderson, Evan W. & Ghysels, Eric & Juergens, Jennifer L., 2009. "The impact of risk and uncertainty on expected returns," Journal of Financial Economics, Elsevier, vol. 94(2), pages 233-263, November.
- Christian Glocker & Serguei Kaniovski, 2022.
"Macroeconometric forecasting using a cluster of dynamic factor models,"
Empirical Economics, Springer, vol. 63(1), pages 43-91, July.
- Christian Glocker & Serguei Kaniovski, 2020. "Macroeconometric Forecasting Using a Cluster of Dynamic Factor Models," WIFO Working Papers 614, WIFO.
- Guillaume Bagnarosa & Mark Cummins & Michael Dowling & Fearghal Kearney, 2022. "Commodity risk in European dairy firms," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 49(1), pages 151-181.
- Michael McAleer & Marcelo Medeiros, 2008.
"Realized Volatility: A Review,"
Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 10-45.
- Michael McAleer & Marcelo Cunha Medeiros, 2006. "Realized volatility: a review," Textos para discussão 531 Publication status: F, Department of Economics PUC-Rio (Brazil).
- Pacifico, Antonio, 2020. "Bayesian Fuzzy Clustering with Robust Weighted Distance for Multiple ARIMA and Multivariate Time-Series," MPRA Paper 104379, University Library of Munich, Germany.
- Baele, Lieven & Londono, Juan M., 2013. "Understanding industry betas," Journal of Empirical Finance, Elsevier, vol. 22(C), pages 30-51.
- Tony Chernis & Rodrigo Sekkel, 2017.
"A dynamic factor model for nowcasting Canadian GDP growth,"
Empirical Economics, Springer, vol. 53(1), pages 217-234, August.
- Tony Chernis & Rodrigo Sekkel, 2017. "A Dynamic Factor Model for Nowcasting Canadian GDP Growth," Staff Working Papers 17-2, Bank of Canada.
- Guo, Xiaozhu & Huang, Dengshi & Li, Xiafei & Liang, Chao, 2023. "Are categorical EPU indices predictable for carbon futures volatility? Evidence from the machine learning method," International Review of Economics & Finance, Elsevier, vol. 83(C), pages 672-693.
- Robin de Vilder & Marcel P. Visser, 2007.
"Proxies for daily volatility,"
Working Papers
halshs-00588307, HAL.
- Robin de Vilder & Marcel P. Visser, 2007. "Proxies for daily volatility," PSE Working Papers halshs-00588307, HAL.
- Subbotin, Alexandre, 2009. "Volatility Models: from Conditional Heteroscedasticity to Cascades at Multiple Horizons," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 15(3), pages 94-138.
- Hwang, Eunju & Shin, Dong Wan, 2014. "Infinite-order, long-memory heterogeneous autoregressive models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 339-358.
- Aharon, David Y. & Qadan, Mahmoud, 2018. "What drives the demand for information in the commodity market?," Resources Policy, Elsevier, vol. 59(C), pages 532-543.
- Damien Kunjal & Faeezah Peerbhai & Paul-Francois Muzindutsi, 2022. "Political, economic, and financial country risks and the volatility of the South African Exchange Traded Fund market: A GARCH-MIDAS approach," Risk Management, Palgrave Macmillan, vol. 24(3), pages 236-258, September.
- Sucarrat, Genaro & Grønneberg, Steffen, 2016. "Models of Financial Return With Time-Varying Zero Probability," MPRA Paper 68931, University Library of Munich, Germany.
- Thomas Dimpfl & Stephan Jank, 2016.
"Can Internet Search Queries Help to Predict Stock Market Volatility?,"
European Financial Management, European Financial Management Association, vol. 22(2), pages 171-192, March.
- Dimpfl, Thomas & Jank, Stephan, 2011. "Can Internet search queries help to predict stock market volatility?," University of Tübingen Working Papers in Business and Economics 18, University of Tuebingen, Faculty of Economics and Social Sciences, School of Business and Economics.
- Dimpfl, Thomas & Jank, Stephan, 2011. "Can internet search queries help to predict stock market volatility?," CFR Working Papers 11-15, University of Cologne, Centre for Financial Research (CFR).
- repec:lan:wpaper:3324 is not listed on IDEAS
- Stavros Degiannakis, 2023.
"The D-model for GDP nowcasting,"
Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 159(1), pages 1-33, December.
- Stavros Degiannakis, 2023. "The D-model for GDP nowcasting," Working Papers 317, Bank of Greece.
- Miller, J. Isaac, 2018.
"Simple robust tests for the specification of high-frequency predictors of a low-frequency series,"
Econometrics and Statistics, Elsevier, vol. 5(C), pages 45-66.
- J. Isaac Miller, 2014. "Simple Robust Tests for the Specification of High-Frequency Predictors of a Low-Frequency Series," Working Papers 1412, Department of Economics, University of Missouri.
- Huang, Yisu & Xu, Weiju & Huang, Dengshi & Zhao, Chenchen, 2023. "Chinese crude oil futures volatility and sustainability: An uncertainty indices perspective," Resources Policy, Elsevier, vol. 80(C).
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2003.
"Some Like it Smooth, and Some Like it Rough: Untangling Continuous and Jump Components in Measuring, Modeling, and Forecasting Asset Return Volatility,"
PIER Working Paper Archive
03-025, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 01 Sep 2003.
- Andersen, Torben G. & Bollerslev, Tim & Francis X. Diebold,, 2003. "Some Like it Smooth, and Some Like it Rough: Untangling Continuous and Jump Components in Measuring, Modeling, and Forecasting Asset Return Volatility," CFS Working Paper Series 2003/35, Center for Financial Studies (CFS).
- Gopal K. Basak & Ravi Jagannathan & Tongshu Ma, 2004. "A Jackknife Estimator for Tracking Error Variance of Optimal Portfolios Constructed Using Estimated Inputs1," NBER Working Papers 10447, National Bureau of Economic Research, Inc.
- Torben G. Andersen & Viktor Todorov, 2009. "Realized Volatility and Multipower Variation," CREATES Research Papers 2009-49, Department of Economics and Business Economics, Aarhus University.
- Peter Christoffersen & Stefano Mazzotta, 2004.
"The Informational Content of Over-the-Counter Currency Options,"
CIRANO Working Papers
2004s-16, CIRANO.
- Christoffersen, Peter & Mazzotta, Stefano, 2004. "The informational content of over-the-counter currency options," Working Paper Series 366, European Central Bank.
- Fang, Libing & Yu, Honghai & Huang, Yingbo, 2018. "The role of investor sentiment in the long-term correlation between U.S. stock and bond markets," International Review of Economics & Finance, Elsevier, vol. 58(C), pages 127-139.
- Hansen, Peter R. & Lunde, Asger, 2006. "Realized Variance and Market Microstructure Noise," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 127-161, April.
- Nystrup, Peter & Lindström, Erik & Møller, Jan K. & Madsen, Henrik, 2021. "Dimensionality reduction in forecasting with temporal hierarchies," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1127-1146.
- Belcaid, Karim & El Ghini, Ahmed, 2019. "U.S., European, Chinese economic policy uncertainty and Moroccan stock market volatility," The Journal of Economic Asymmetries, Elsevier, vol. 20(C).
- Kambouroudis, Dimos S. & McMillan, David G., 2015. "Is there an ideal in-sample length for forecasting volatility?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 37(C), pages 114-137.
- Sakemoto, Ryuta, 2023. "The long-run risk premium in the intertemporal CAPM: International evidence," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 89(C).
- Ioannis Chalkiadakis & Gareth W. Peters & Matthew Ames, 2023. "Hybrid ARDL-MIDAS-Transformer time-series regressions for multi-topic crypto market sentiment driven by price and technology factors," Digital Finance, Springer, vol. 5(2), pages 295-365, June.
- Philip Hans Franses, 2019. "On inflation expectations in the NKPC model," Empirical Economics, Springer, vol. 57(6), pages 1853-1864, December.
- Adam E Clements & Yin Liao, 2013. "Modeling and forecasting realized volatility: getting the most out of the jump component," NCER Working Paper Series 93, National Centre for Econometric Research.
- Chevallier, Julien, 2011. "Evaluating the carbon-macroeconomy relationship: Evidence from threshold vector error-correction and Markov-switching VAR models," Economic Modelling, Elsevier, vol. 28(6), pages 2634-2656.
- Marcos Bujosa & Antonio García‐Ferrer & Aránzazu de Juan & Antonio Martín‐Arroyo, 2020. "Evaluating early warning and coincident indicators of business cycles using smooth trends," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(1), pages 1-17, January.
- Feifei Huang & Mingxia Lin & Shoukat Iqbal Khattak, 2024. "Form Uncertainty to Sustainable Decision-Making: A Novel MIDAS–AM–DeepAR-Based Prediction Model for E-Commerce Industry Development," Sustainability, MDPI, vol. 16(14), pages 1-24, July.
- Clements, A. & Silvennoinen, A., 2013. "Volatility timing: How best to forecast portfolio exposures," Journal of Empirical Finance, Elsevier, vol. 24(C), pages 108-115.
- Min Liu & Chien‐Chiang Lee & Wei‐Chong Choo, 2021. "An empirical study on the role of trading volume and data frequency in volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 792-816, August.
- Kihwan Kim & Hyun Hak Kim & Norman R. Swanson, 2023. "Mixing mixed frequency and diffusion indices in good times and in bad: an assessment based on historical data around the great recession of 2008," Empirical Economics, Springer, vol. 64(3), pages 1421-1469, March.
- Robert Kunst & Philip Franses, 2015.
"Asymmetric time aggregation and its potential benefits for forecasting annual data,"
Empirical Economics, Springer, vol. 49(1), pages 363-387, August.
- Kunst, Robert M. & Franses, Philip Hans, 2010. "Asymmetric Time Aggregation and its Potential Benefits for Forecasting Annual Data," Economics Series 252, Institute for Advanced Studies.
- Fuertes, Ana-Maria & Izzeldin, Marwan & Kalotychou, Elena, 2009. "On forecasting daily stock volatility: The role of intraday information and market conditions," International Journal of Forecasting, Elsevier, vol. 25(2), pages 259-281.
- Qian, Hang, 2013. "Vector Autoregression with Mixed Frequency Data," MPRA Paper 47856, University Library of Munich, Germany.
- Keiichi Goshima & Hiroshi Ishijima & Mototsugu Shintani & Hiroki Yamamoto, 2019. "Forecasting Japanese inflation with a news-based leading indicator of economic activities," CARF F-Series CARF-F-458, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
- Andreou, Elena & Ghysels, Eric, 2006. "Monitoring disruptions in financial markets," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 77-124.
- repec:nbp:nbpbik:v:47:y:2016:i:6:p:365-394 is not listed on IDEAS
- Salisu, Afees A. & Ogbonna, Ahamuefula E., 2019.
"Another look at the energy-growth nexus: New insights from MIDAS regressions,"
Energy, Elsevier, vol. 174(C), pages 69-84.
- Afees A. Salisu & Ahamuefula Ephraim Ogbonna, 2017. "Forecasting GDP with energy series: ADL-MIDAS vs. Linear Time Series Models," Working Papers 035, Centre for Econometric and Allied Research, University of Ibadan.
- Foroni, Claudia & Ravazzolo, Francesco & Rossini, Luca, 2019. "Forecasting daily electricity prices with monthly macroeconomic variables," Working Paper Series 2250, European Central Bank.
- Stefano Grassi & Nima Nonejad & Paolo Santucci De Magistris, 2017.
"Forecasting With the Standardized Self‐Perturbed Kalman Filter,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(2), pages 318-341, March.
- Stefano Grassi & Nima Nonejad & Paolo Santucci de Magistris, 2014. "Forecasting with the Standardized Self-Perturbed Kalman Filter," Studies in Economics 1405, School of Economics, University of Kent.
- Stefano Grassi & Nima Nonejad & Paolo Santucci de Magistris, 2014. "Forecasting with the Standardized Self-Perturbed Kalman Filter," CREATES Research Papers 2014-12, Department of Economics and Business Economics, Aarhus University.
- Mei, Dexiang & Zhao, Chenchen & Luo, Qin & Li, Yan, 2022. "Forecasting the Chinese low-carbon index volatility," Resources Policy, Elsevier, vol. 77(C).
- Herwartz, Helmut & Golosnoy, Vasyl, 2007. "Semiparametric Approaches to the Prediction of Conditional Correlation Matrices in Finance," Economics Working Papers 2007-23, Christian-Albrechts-University of Kiel, Department of Economics.
- Amendola, A. & Candila, V. & Cipollini, F. & Gallo, G.M., 2024.
"Doubly multiplicative error models with long- and short-run components,"
Socio-Economic Planning Sciences, Elsevier, vol. 91(C).
- Alessandra Amendola & Vincenzo Candila & Fabrizio Cipollini & Giampiero M. Gallo, 2020. "Doubly Multiplicative Error Models with Long- and Short-run Components," Papers 2006.03458, arXiv.org.
- Mei, Dexiang & Ma, Feng & Liao, Yin & Wang, Lu, 2020. "Geopolitical risk uncertainty and oil future volatility: Evidence from MIDAS models," Energy Economics, Elsevier, vol. 86(C).
- Virmantas Kvedaras & Alfredas Račkauskas, 2010. "Regression Models with Variables of Different Frequencies: The Case of a Fixed Frequency Ratio," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 72(5), pages 600-620, October.
- Gopal K. Basak & Ravi Jagannathan & Tongshu Ma, 2009. "Jackknife Estimator for Tracking Error Variance of Optimal Portfolios," Management Science, INFORMS, vol. 55(6), pages 990-1002, June.
- Deng, Yongheng & Girardin, Eric & Joyeux, Roselyne, 2018.
"Fundamentals and the volatility of real estate prices in China: A sequential modelling strategy,"
China Economic Review, Elsevier, vol. 48(C), pages 205-222.
- Yongheng Deng & Eric Girardin & Roselyne Joyeux, 2018. "Fundamentals and the volatility of real estate prices in China: A sequential modelling strategy," Post-Print hal-01996210, HAL.
- Andreou, Elena & Ghysels, Eric, 2021. "Predicting the VIX and the volatility risk premium: The role of short-run funding spreads Volatility Factors," Journal of Econometrics, Elsevier, vol. 220(2), pages 366-398.
- Maojun Zhang & Yang Zhao & Jiangxia Nan, 2022. "Economic policy uncertainty and volatility of treasury futures," Review of Derivatives Research, Springer, vol. 25(1), pages 93-107, April.
- repec:lan:wpaper:592830 is not listed on IDEAS
- Liu, Jing & Ma, Feng & Tang, Yingkai & Zhang, Yaojie, 2019. "Geopolitical risk and oil volatility: A new insight," Energy Economics, Elsevier, vol. 84(C).
- León Valle Ángel & Nave Pineda Juan & Rubio Irigoyen Gonzalo, 2005. "The Relationship between Risk and Expected Return in Europe," Working Papers 201025, Fundacion BBVA / BBVA Foundation.
- Tseng Tseng-Chan & Chung Huimin & Huang Chin-Sheng, 2009. "Modeling Jump and Continuous Components in the Volatility of Oil Futures," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 13(3), pages 1-30, May.
- Correa, Alexander, 2021. "Prediciendo la llegada de turistas a Colombia a partir de los criterios de Google Trends," Revista Lecturas de Economía, Universidad de Antioquia, CIE, issue No. 95, pages 105-134, July.
- Ojogho, Osaihiomwan & Egware, Robert Awotu, 2015. "Price Generating Process And Volatility In Nigerian Agricultural Commodities Market," International Journal of Food and Agricultural Economics (IJFAEC), Alanya Alaaddin Keykubat University, Department of Economics and Finance, vol. 3(4), pages 1-10, October.
- Eric Ghysels & J. Isaac Miller, 2015.
"Testing for Cointegration with Temporally Aggregated and Mixed-Frequency Time Series,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 36(6), pages 797-816, November.
- Eric Ghysels & J. Isaac Miller, 2013. "Testing for Cointegration with Temporally Aggregated and Mixed-frequency Time Series," Working Papers 1307, Department of Economics, University of Missouri, revised 07 May 2014.
- Ghysels, Eric & Miller, J. Isaac, 2013. "Testing for Cointegration with Temporally Aggregated and Mixed-frequency Time Series," CEPR Discussion Papers 9654, C.E.P.R. Discussion Papers.
- Wei, Yu & Liu, Jing & Lai, Xiaodong & Hu, Yang, 2017. "Which determinant is the most informative in forecasting crude oil market volatility: Fundamental, speculation, or uncertainty?," Energy Economics, Elsevier, vol. 68(C), pages 141-150.
- Dhaene, Geert & Wu, Jianbin, 2020. "Incorporating overnight and intraday returns into multivariate GARCH volatility models," Journal of Econometrics, Elsevier, vol. 217(2), pages 471-495.
- Golosnoy, Vasyl & Gribisch, Bastian & Liesenfeld, Roman, 2012.
"The conditional autoregressive Wishart model for multivariate stock market volatility,"
Journal of Econometrics, Elsevier, vol. 167(1), pages 211-223.
- Golosnoy, Vasyl & Gribisch, Bastian & Liesenfeld, Roman, 2010. "The conditional autoregressive wishart model for multivariate stock market volatility," Economics Working Papers 2010-07, Christian-Albrechts-University of Kiel, Department of Economics.
- Jiqian Wang & Rangan Gupta & Oğuzhan Çepni & Feng Ma, 2023.
"Forecasting international REITs volatility: the role of oil-price uncertainty,"
The European Journal of Finance, Taylor & Francis Journals, vol. 29(14), pages 1579-1597, September.
- Jiqian Wang & Rangan Gupta & Oguzhan Cepni & Feng Ma, 2021. "Forecasting International REITs Volatility: The Role of Oil-Price Uncertainty," Working Papers 202173, University of Pretoria, Department of Economics.
- Ooft, Gavin & Bhaghoe, Sailesh & Hans Franses, Philip, 2021.
"Forecasting annual inflation in Suriname,"
Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 73(C).
- Ooft, G. & Bhaghoe, S. & Franses, Ph.H.B.F., 2019. "Forecasting Annual Inflation in Suriname," Econometric Institute Research Papers EI2019-32, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Knut Are Aastveit & Claudia Foroni & Francesco Ravazzolo, 2017.
"Density Forecasts With Midas Models,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(4), pages 783-801, June.
- Knut Are Aastveit & Claudia Foroni & Francesco Ravazzolo, 2014. "Density forecasts with MIDAS models," Working Paper 2014/10, Norges Bank.
- Knut Are Aastveit & Claudia Foroni & Francesco Ravazzolo, 2014. "Density forecasts with MIDAS models," Working Papers No 3/2014, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- H. J. Turtle & Kainan Wang, 2014. "Modeling Conditional Covariances With Economic Information Instruments," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(2), pages 217-236, April.
- Bruno Feunou & Mohammad R. Jahan-Parvar & Roméo Tédongap, 2016.
"Which parametric model for conditional skewness?,"
The European Journal of Finance, Taylor & Francis Journals, vol. 22(13), pages 1237-1271, October.
- Bruno Feunou & Mohammad R. Jahan-Parvar & Roméo Tedongap, 2013. "Which Parametric Model for Conditional Skewness?," Staff Working Papers 13-32, Bank of Canada.
- Ma, Feng & Wahab, M.I.M. & Zhang, Yaojie, 2019. "Forecasting the U.S. stock volatility: An aligned jump index from G7 stock markets," Pacific-Basin Finance Journal, Elsevier, vol. 54(C), pages 132-146.
- Fang, Libing & Yu, Honghai & Xiao, Wen, 2018. "Forecasting gold futures market volatility using macroeconomic variables in the United States," Economic Modelling, Elsevier, vol. 72(C), pages 249-259.
- Lu, Xinjie & Zeng, Qing & Zhong, Juandan & Zhu, Bo, 2024. "International stock market volatility: A global tail risk sight," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 91(C).
- Bangwayo-Skeete, Prosper F. & Skeete, Ryan W., 2015. "Can Google data improve the forecasting performance of tourist arrivals? Mixed-data sampling approach," Tourism Management, Elsevier, vol. 46(C), pages 454-464.
- Gong, Xu & Sun, Yi & Du, Zhili, 2022. "Geopolitical risk and China's oil security," Energy Policy, Elsevier, vol. 163(C).
- Michelle T. Armesto & Kristie M. Engemann & Michael T. Owyang, 2010. "Forecasting with mixed frequencies," Review, Federal Reserve Bank of St. Louis, vol. 92(Nov), pages 521-536.
- Zeynalov, Ayaz, 2017. "Forecasting Tourist Arrivals in Prague: Google Econometrics," MPRA Paper 83268, University Library of Munich, Germany.
- Becker Ralf & Clements Adam E & Hurn Stan, 2011. "Semi-Parametric Forecasting of Realized Volatility," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 15(3), pages 1-23, May.
- Afees A. Salisu & Raymond Swaray, 2020.
"Forecasting the Return Volatility of Energy Prices: A GARCH-MIDAS Approach,"
World Scientific Book Chapters, in: Stéphane Goutte & Duc Khuong Nguyen (ed.), HANDBOOK OF ENERGY FINANCE Theories, Practices and Simulations, chapter 3, pages 47-71,
World Scientific Publishing Co. Pte. Ltd..
- Afees A. Salisu & Raymond Swaray, 2017. "Forecasting the return volatility of energy prices: A GARCH MIDAS approach," Working Papers 029, Centre for Econometric and Allied Research, University of Ibadan.
- Yongheng Deng & Eric Girardin & Roselyne Joyeux, 2015. "Fundamentals and the Volatility of Real Estate Prices in China: A Sequential Modelling Strategy," Working Papers 222015, Hong Kong Institute for Monetary Research.
- Elena Andreou, 2016. "On the use of high frequency measures of volatility in MIDAS regressions," University of Cyprus Working Papers in Economics 03-2016, University of Cyprus Department of Economics.
- Amendola, Alessandra & Braione, Manuela & Candila, Vincenzo & Storti, Giuseppe, 2020. "A Model Confidence Set approach to the combination of multivariate volatility forecasts," International Journal of Forecasting, Elsevier, vol. 36(3), pages 873-891.
- Liu, Xinyi & Margaritis, Dimitris & Wang, Peiming, 2012. "Stock market volatility and equity returns: Evidence from a two-state Markov-switching model with regressors," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 483-496.
- Xiafei Li & Yu Wei & Xiaodan Chen & Feng Ma & Chao Liang & Wang Chen, 2022. "Which uncertainty is powerful to forecast crude oil market volatility? New evidence," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 4279-4297, October.
- Dimitra Lamprou, 2015. "Nowcasting GDP in Greece: A Note on Forecasting Improvements from the Use of Bridge Models," South-Eastern Europe Journal of Economics, Association of Economic Universities of South and Eastern Europe and the Black Sea Region, vol. 13(1), pages 85-100.
- Valadkhani, Abbas & Smyth, Russell, 2018. "Asymmetric responses in the timing, and magnitude, of changes in Australian monthly petrol prices to daily oil price changes," Energy Economics, Elsevier, vol. 69(C), pages 89-100.
- Wang, Lu & Ma, Feng & Liu, Jing & Yang, Lin, 2020. "Forecasting stock price volatility: New evidence from the GARCH-MIDAS model," International Journal of Forecasting, Elsevier, vol. 36(2), pages 684-694.
- Ryan T. Ball & Eric Ghysels, 2018. "Automated Earnings Forecasts: Beat Analysts or Combine and Conquer?," Management Science, INFORMS, vol. 64(10), pages 4936-4952, October.
- Michael P. Clements & Ana Beatriz Galvão, 2007. "Macroeconomic Forecasting with Mixed Frequency Data: Forecasting US Output Growth," Working Papers 616, Queen Mary University of London, School of Economics and Finance.
- Talavera, Oleksandr & Tsapin, Andriy & Zholud, Oleksandr, 2012.
"Macroeconomic uncertainty and bank lending: The case of Ukraine,"
Economic Systems, Elsevier, vol. 36(2), pages 279-293.
- Oleksandr Talavera & Andriy Tsapin & Oleksandr Zholud, 2006. "Macroeconomic Uncertainty and Bank Lending: The Case of Ukraine," Discussion Papers of DIW Berlin 637, DIW Berlin, German Institute for Economic Research.
- Marcel P. Visser, 2011.
"GARCH Parameter Estimation Using High-Frequency Data,"
Journal of Financial Econometrics, Oxford University Press, vol. 9(1), pages 162-197, Winter.
- Visser, Marcel P., 2008. "Garch Parameter Estimation Using High-Frequency Data," MPRA Paper 9076, University Library of Munich, Germany.
- Wong, Wing-Keung & McAleer, Michael, 2009. "Mapping the Presidential Election Cycle in US stock markets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(11), pages 3267-3277.
- Ayinde, Taofeek O. & Olaniran, Abeeb O. & Abolade, Onomeabure C. & Ogbonna, Ahamuefula Ephraim, 2023. "Technology shocks - Gold market connection: Is the effect episodic to business cycle behaviour?," Resources Policy, Elsevier, vol. 84(C).
- Rodriguez, Abel & Puggioni, Gavino, 2010. "Mixed frequency models: Bayesian approaches to estimation and prediction," International Journal of Forecasting, Elsevier, vol. 26(2), pages 293-311, April.
- Fernandes, Leonardo H.S. & Silva, José W.L. & de Araujo, Fernando H.A. & Ferreira, Paulo & Aslam, Faheem & Tabak, Benjamin Miranda, 2022. "Interplay multifractal dynamics among metal commodities and US-EPU," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
- Aniket Bhanu, 2024. "The Effect of Anti‐Procyclical Central Counterparty Margins On Trading," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(9), pages 1474-1486, September.
- Hamid, Alain & Heiden, Moritz, 2015. "Forecasting volatility with empirical similarity and Google Trends," Journal of Economic Behavior & Organization, Elsevier, vol. 117(C), pages 62-81.
- Chan-Guk Huh & Jie Wu, 2015. "Linkage between US monetary policy and emerging economies: the case of Korea?s financial market and monetary policy," International Journal of Economic Sciences, International Institute of Social and Economic Sciences, vol. 4(3), pages 1-18, September.
- Kuzin, Vladimir & Marcellino, Massimiliano & Schumacher, Christian, 2011.
"MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the euro area,"
International Journal of Forecasting, Elsevier, vol. 27(2), pages 529-542.
- Kuzin, Vladimir & Marcellino, Massimiliano & Schumacher, Christian, 2011. "MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the euro area," International Journal of Forecasting, Elsevier, vol. 27(2), pages 529-542, April.
- Vladimir Kuzin & Massimiliano Marcellino & Christian Schumacher, 2009. "MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the Euro Area," Economics Working Papers ECO2009/32, European University Institute.
- Schumacher, Christian & Marcellino, Massimiliano & Kuzin, Vladimir, 2009. "MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the Euro Area," CEPR Discussion Papers 7445, C.E.P.R. Discussion Papers.
- Wang, Jianxin & Yang, Minxian, 2009. "Asymmetric volatility in the foreign exchange markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 19(4), pages 597-615, October.
- Gani Ramadani & Magdalena Petrovska & Vesna Bucevska, 2021. "Evaluation of mixed frequency approaches for tracking near-term economic developments in North Macedonia," Working Papers 2021-03, National Bank of the Republic of North Macedonia.
- repec:hum:wpaper:sfb649dp2013-014 is not listed on IDEAS
- Yang, Cheng-Hu & Wang, Hai-Tang & Ma, Xin & Talluri, Srinivas, 2023. "A data-driven newsvendor problem: A high-dimensional and mixed-frequency method," International Journal of Production Economics, Elsevier, vol. 266(C).
- Sara Boni & Massimiliano Caporin & Francesco Ravazzolo, 2024. "Nowcasting Inflation at Quantiles: Causality from Commodities," BEMPS - Bozen Economics & Management Paper Series BEMPS102, Faculty of Economics and Management at the Free University of Bozen.
- Anindya Biswas, 2015. "The output gap and inflation in U.S. data: an empirical note," Economics Bulletin, AccessEcon, vol. 35(2), pages 841-845.
- Pierre Guérin & Massimiliano Marcellino, 2013.
"Markov-Switching MIDAS Models,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 45-56, January.
- Marcellino, Massimiliano, 2011. "Markov-switching MIDAS models," CEPR Discussion Papers 8234, C.E.P.R. Discussion Papers.
- Guy P. Nason & Ben Powell & Duncan Elliott & Paul A. Smith, 2017. "Should we sample a time series more frequently?: decision support via multirate spectrum estimation," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(2), pages 353-407, February.
- Kwon, Ji Ho & Sohn, Bumjean, 2024. "The ICAPM and empirical pricing factors: A simulation study," Finance Research Letters, Elsevier, vol. 60(C).
- Babii, Andrii & Ball, Ryan T. & Ghysels, Eric & Striaukas, Jonas, 2023.
"Machine learning panel data regressions with heavy-tailed dependent data: Theory and application,"
Journal of Econometrics, Elsevier, vol. 237(2).
- Andrii Babii & Ryan T. Ball & Eric Ghysels & Jonas Striaukas, 2020. "Machine Learning Panel Data Regressions with Heavy-tailed Dependent Data: Theory and Application," Papers 2008.03600, arXiv.org, revised Nov 2021.
- Zhang, Ning & Su, Xiaoman & Qi, Shuyuan, 2023. "An empirical investigation of multiperiod tail risk forecasting models," International Review of Financial Analysis, Elsevier, vol. 86(C).
- Hengzhen Lu & Qiujin Gao & Ling Xiao & Gurjeet Dhesi, 2024. "Forecasting EUA futures volatility with geopolitical risk: evidence from GARCH-MIDAS models," Review of Managerial Science, Springer, vol. 18(7), pages 1917-1943, July.
- Huiling Yuan & Yong Zhou & Zhiyuan Zhang & Xiangyu Cui, 2019. "Forecasting security's volatility using low-frequency historical data, high-frequency historical data and option-implied volatility," Papers 1907.02666, arXiv.org.
- Łukasz Lenart & Agnieszka Leszczyńska-Paczesna, 2016. "Do market prices improve the accuracy of inflation forecasting in Poland? A disaggregated approach," Bank i Kredyt, Narodowy Bank Polski, vol. 47(5), pages 365-394.
- Lu, Xinjie & Ma, Feng & Li, Haibo & Wang, Jianqiong, 2023. "INE oil futures volatility prediction: Exchange rates or international oil futures volatility?," Energy Economics, Elsevier, vol. 126(C).
- Seo, Sung Won & Kim, Jun Sik, 2015. "The information content of option-implied information for volatility forecasting with investor sentiment," Journal of Banking & Finance, Elsevier, vol. 50(C), pages 106-120.
- Bauer, Gregory H. & Vorkink, Keith, 2011. "Forecasting multivariate realized stock market volatility," Journal of Econometrics, Elsevier, vol. 160(1), pages 93-101, January.
- Eunjeong Choi & Soohwan Cho & Dong Keun Kim, 2020. "Power Demand Forecasting using Long Short-Term Memory (LSTM) Deep-Learning Model for Monitoring Energy Sustainability," Sustainability, MDPI, vol. 12(3), pages 1-14, February.
- Qiu, Yue, 2020. "Forecasting the Consumer Confidence Index with tree-based MIDAS regressions," Economic Modelling, Elsevier, vol. 91(C), pages 247-256.
- Olajide Oyadeyi, 2024. "Banking Innovation, Financial Inclusion and Economic Growth in Nigeria," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(2), pages 7014-7043, June.
- Emmanuel Mamatzakis & Mike G. Tsionas & Steven Ongena, 2023.
"Why do households repay their debt in UK during the COVID-19 crisis?,"
Journal of Economic Studies, Emerald Group Publishing Limited, vol. 50(8), pages 1789-1823, April.
- MAMATZAKIS, E & Tsionas, Mike & Ongena, Steven, 2022. "Why do households repay their debt in UK during the COVID-19 crisis?," MPRA Paper 118785, University Library of Munich, Germany, revised 07 Oct 2023.
- Andrianady, Josué R. & Rajaonarison, Njakanasandratra R. & Razanajatovo, Yves H., 2023. "Estimating Madagascar economic growth using the Mixed Data Sampling (MIDAS) approach," MPRA Paper 118267, University Library of Munich, Germany.
- Huiling Yuan & Guodong Li & Junhui Wang, 2022. "High-Frequency-Based Volatility Model with Network Structure," Papers 2204.12933, arXiv.org.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007.
"Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility,"
The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2005. "Roughing it Up: Including Jump Components in the Measurement, Modeling and Forecasting of Return Volatility," NBER Working Papers 11775, National Bureau of Economic Research, Inc.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling and Forecasting of Return Volatility," CREATES Research Papers 2007-18, Department of Economics and Business Economics, Aarhus University.
- Lu, Fei & Ma, Feng & Guo, Qiang, 2023. "Less is more? New evidence from stock market volatility predictability," International Review of Financial Analysis, Elsevier, vol. 89(C).
- Salisu, Afees A. & Ogbonna, Ahamuefula E. & Lasisi, Lukman & Olaniran, Abeeb, 2022. "Geopolitical risk and stock market volatility in emerging markets: A GARCH – MIDAS approach," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
- Ioannis Chatziantoniou & Stavros Degiannakis & George Filis & Tim Lloyd, 2021.
"Oil Price Volatility is Effective in Predicting Food Price Volatility. Or is it?,"
The Energy Journal, , vol. 42(6), pages 25-48, November.
- Ioannis Chatziantoniou, Stavros Degiannakis, George Filis, and Tim Lloyd, 2021. "Oil price volatility is effective in predicting food price volatility. Or is it?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 6).
- Bandi, Federico M. & Russell, Jeffrey R., 2011. "Market microstructure noise, integrated variance estimators, and the accuracy of asymptotic approximations," Journal of Econometrics, Elsevier, vol. 160(1), pages 145-159, January.
- Clements, Adam & Liao, Yin, 2017. "Forecasting the variance of stock index returns using jumps and cojumps," International Journal of Forecasting, Elsevier, vol. 33(3), pages 729-742.
- Santiago Etchegaray Alvarez, 2022. "Proyecciones macroeconómicas con datos en frecuencias mixtas. Modelos ADL-MIDAS, U-MIDAS y TF-MIDAS con aplicaciones para Uruguay," Documentos de trabajo 2022004, Banco Central del Uruguay.
- Isao Ishida & Virmantas Kvedaras, 2015. "Modeling Autoregressive Processes with Moving-Quantiles-Implied Nonlinearity," Econometrics, MDPI, vol. 3(1), pages 1-53, January.
- Emiliano Magrini & Ayca Donmez, 2013. "Agricultural Commodity Price Volatility and Its Macroeconomic Determinants: A GARCH-MIDAS Approach," JRC Research Reports JRC84138, Joint Research Centre.
- Neville Francis & Eric Ghysels & Michael T. Owyang, 2011. "The low-frequency impact of daily monetary policy shocks," Working Papers 2011-009, Federal Reserve Bank of St. Louis.
- Alexander Subbotin & Thierry Chauveau & Kateryna Shapovalova, 2009. "Volatility Models: from GARCH to Multi-Horizon Cascades," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00390636, HAL.
- Jian Zhou, 2017. "Forecasting REIT volatility with high-frequency data: a comparison of alternative methods," Applied Economics, Taylor & Francis Journals, vol. 49(26), pages 2590-2605, June.
- Grassi, Stefano & Santucci de Magistris, Paolo, 2015.
"It's all about volatility of volatility: Evidence from a two-factor stochastic volatility model,"
Journal of Empirical Finance, Elsevier, vol. 30(C), pages 62-78.
- Stefano Grassi & Paolo Santucci de Magistris, 2013. "It's all about volatility of volatility: evidence from a two-factor stochastic volatility model," Studies in Economics 1404, School of Economics, University of Kent.
- Stefano Grassi & Paolo Santucci de Magistris, 2013. "It’s all about volatility (of volatility): evidence from a two-factor stochastic volatility model," CREATES Research Papers 2013-03, Department of Economics and Business Economics, Aarhus University.
- Gloria González-Rivera & Tae-Hwy Lee, 2007. "Nonlinear Time Series in Financial Forecasting," Working Papers 200803, University of California at Riverside, Department of Economics, revised Feb 2008.
- Andreou, Elena, 2016. "On the use of high frequency measures of volatility in MIDAS regressions," Journal of Econometrics, Elsevier, vol. 193(2), pages 367-389.
- Helmut Lütkepohl, 2010.
"Forecasting Aggregated Time Series Variables: A Survey,"
OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2010(2), pages 1-26.
- Helmut Luetkepohl, 2009. "Forecasting Aggregated Time Series Variables: A Survey," Economics Working Papers ECO2009/17, European University Institute.
- Eden Xiaoying Jiao & Jason Li Chen, 2019. "Tourism forecasting: A review of methodological developments over the last decade," Tourism Economics, , vol. 25(3), pages 469-492, May.
- Qifa Xu & Zezhou Wang & Cuixia Jiang & Yezheng Liu, 2023. "Deep learning on mixed frequency data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(8), pages 2099-2120, December.
- Motegi, Kaiji & Sadahiro, Akira, 2018. "Sluggish private investment in Japan’s Lost Decade: Mixed frequency vector autoregression approach," The North American Journal of Economics and Finance, Elsevier, vol. 43(C), pages 118-128.
- Ryan T. Ball, 2013. "Does Anticipated Information Impose a Cost on Risk‐Averse Investors? A Test of the Hirshleifer Effect," Journal of Accounting Research, Wiley Blackwell, vol. 51(1), pages 31-66, March.
- Freddy Ronalde Camacho-Villagomez & Yanina Shegia Bajaña-Villagomez & Andrea Johanna RodrÃguez-Bustos, 2024. "Estimating the Impact of Oil Price Volatility on the Ecuadorian Economy: A MIDAS Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 14(4), pages 371-376, July.
- Biswas, Anindya, 2014. "The output gap and expected security returns," Review of Financial Economics, Elsevier, vol. 23(3), pages 131-140.
- Brownlees Christian T. & Vannucci Marina, 2013. "A Bayesian approach for capturing daily heterogeneity in intra-daily durations time series," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 17(1), pages 21-46, February.
- Çelik, Sibel & Ergin, Hüseyin, 2014. "Volatility forecasting using high frequency data: Evidence from stock markets," Economic Modelling, Elsevier, vol. 36(C), pages 176-190.
- Nava, Consuelo R. & Osti, Linda & Zoia, Maria Grazia, 2022. "Forecasting Domestic Tourism across Regional Destinations through MIDAS Regressions," Department of Economics and Statistics Cognetti de Martiis. Working Papers 202207, University of Turin.
- Tobias Eckernkemper & Bastian Gribisch, 2021. "Intraday conditional value at risk: A periodic mixed‐frequency generalized autoregressive score approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 883-910, August.
- Neville Francis, 2012. "The Low-Frequency Impact of Daily Monetary Policy Shock," 2012 Meeting Papers 198, Society for Economic Dynamics.
- Degiannakis, Stavros & Filis, George, 2017. "Forecasting oil prices," MPRA Paper 77531, University Library of Munich, Germany.
- Girardin, Eric & Joyeux, Roselyne, 2013.
"Macro fundamentals as a source of stock market volatility in China: A GARCH-MIDAS approach,"
Economic Modelling, Elsevier, vol. 34(C), pages 59-68.
- Eric Girardin & Roselyne Joyeux, 2013. "Macro fundamentals as a source of stock market volatility in China: A GARCH-MIDAS approach," Post-Print hal-01499615, HAL.
- Tumala, Mohammed M. & Salisu, Afees A. & Atoi, Ngozi V., 2022. "Oil-growth nexus in Nigeria: An ADL-MIDAS approach," Resources Policy, Elsevier, vol. 77(C).
- Francisco Blasques & Siem Jan Koopman & Max Mallee, 2014. "Low Frequency and Weighted Likelihood Solutions for Mixed Frequency Dynamic Factor Models," Tinbergen Institute Discussion Papers 14-105/III, Tinbergen Institute.
- Visser, Marcel P., 2008. "Forecasting S&P 500 Daily Volatility using a Proxy for Downward Price Pressure," MPRA Paper 11100, University Library of Munich, Germany.
- Huang, Lin & Wang, Zijun, 2014. "Is the investment factor a proxy for time-varying investment opportunities? The US and international evidence," Journal of Banking & Finance, Elsevier, vol. 44(C), pages 219-232.
- Alexander Correa, 2021. "Forecasting Tourist Arrivals to Colombia from Google Trends Search Criteria," Lecturas de Economía, Universidad de Antioquia, Departamento de Economía, issue 95, pages 105-134, July-Dece.
- Anders B. Trolle & Eduardo S. Schwartz, 2010. "An Empirical Analysis of the Swaption Cube," NBER Working Papers 16549, National Bureau of Economic Research, Inc.
- Chao Liang & Feng Ma & Lu Wang & Qing Zeng, 2021. "The information content of uncertainty indices for natural gas futures volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(7), pages 1310-1324, November.
- Fulvio Corsi & Davide Pirino & Roberto Renò, 2008.
"Volatility forecasting: the jumps do matter,"
Department of Economics University of Siena
534, Department of Economics, University of Siena.
- Fulvio Corsi & Davide Pirino & Roberto Reno, 2009. "Volatility Forecasting: The Jumps Do Matter," Global COE Hi-Stat Discussion Paper Series gd08-036, Institute of Economic Research, Hitotsubashi University.
- Christian T. Brownlees & Giampiero M. Gallo, 2010.
"Comparison of Volatility Measures: a Risk Management Perspective,"
Journal of Financial Econometrics, Oxford University Press, vol. 8(1), pages 29-56, Winter.
- Christian T. Brownlees & Giampiero M. Gallo, 2007. "Comparison of Volatility Measures: a Risk Management Perspective," Econometrics Working Papers Archive wp2007_15, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
- Christian T. Brownlees & Giampiero Gallo, 2008. "Comparison of Volatility Measures: a Risk Management Perspective," Econometrics Working Papers Archive wp2008_03, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
- Elena Andreou & Andros Kourtellos, 2015. "The State and the Future of Cyprus Macroeconomic Forecasting," Cyprus Economic Policy Review, University of Cyprus, Economics Research Centre, vol. 9(1), pages 73-90, June.
- Cenesizoglu, Tolga & Timmermann, Allan, 2012. "Do return prediction models add economic value?," Journal of Banking & Finance, Elsevier, vol. 36(11), pages 2974-2987.
- Barsoum, Fady & Stankiewicz, Sandra, 2015.
"Forecasting GDP growth using mixed-frequency models with switching regimes,"
International Journal of Forecasting, Elsevier, vol. 31(1), pages 33-50.
- Fady Barsoum & Sandra Stankiewicz, 2013. "Forecasting GDP Growth Using Mixed-Frequency Models With Switching Regimes," Working Paper Series of the Department of Economics, University of Konstanz 2013-10, Department of Economics, University of Konstanz.
- Jong-Min Kim & Hojin Jung & Li Qin, 2017. "A new generalized volatility proxy via the stochastic volatility model," Applied Economics, Taylor & Francis Journals, vol. 49(23), pages 2259-2268, May.
- Aue, Alexander & Horváth, Lajos & Hurvich, Clifford & Soulier, Philippe, 2014.
"Limit Laws In Transaction-Level Asset Price Models,"
Econometric Theory, Cambridge University Press, vol. 30(3), pages 536-579, June.
- Alexander Aue & Lajos Horváth & Clifford M. Hurvich & Philippe Soulier, 2014. "Limit Laws in Transaction-Level Asset Price Models," Post-Print hal-00583372, HAL.
- Kasparis, Ioannis & Phillips, Peter C.B., 2012.
"Dynamic misspecification in nonparametric cointegrating regression,"
Journal of Econometrics, Elsevier, vol. 168(2), pages 270-284.
- Ioannis Kasparis & Peter C. B. Phillips, 2009. "Dynamic Misspecification in Nonparametric Cointegrating Regression," University of Cyprus Working Papers in Economics 2-2009, University of Cyprus Department of Economics.
- Ioannis Kasparis & Peter C.B. Phillips, 2009. "Dynamic Misspecification in Nonparametric Cointegrating Regression," Cowles Foundation Discussion Papers 1700, Cowles Foundation for Research in Economics, Yale University.
- Peter C.B.Phillips & Ioannis Kasparis, 2009. "Dynamic Misspecification in Nonparametric Cointegrating Regression," Working Papers CoFie-01-2009, Singapore Management University, Sim Kee Boon Institute for Financial Economics.
- Chen, Wang & Lu, Xinjie & Wang, Jiqian, 2022. "Modeling and managing stock market volatility using MRS-MIDAS model," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 625-635.
- Adlai Fisher & Charles Martineau & Jinfei Sheng, 2022. "Macroeconomic Attention and Announcement Risk Premia," The Review of Financial Studies, Society for Financial Studies, vol. 35(11), pages 5057-5093.
- Trucíos, Carlos, 2019. "Forecasting Bitcoin risk measures: A robust approach," International Journal of Forecasting, Elsevier, vol. 35(3), pages 836-847.
- Le, Trung H., 2020. "Forecasting value at risk and expected shortfall with mixed data sampling," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1362-1379.
- Lee A. Smales, 2021. "The effect of treasury auctions on 10‐year Treasury note futures," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 61(S1), pages 1517-1555, April.
- Wang, Xunxiao & Wu, Chongfeng & Xu, Weidong, 2015. "Volatility forecasting: The role of lunch-break returns, overnight returns, trading volume and leverage effects," International Journal of Forecasting, Elsevier, vol. 31(3), pages 609-619.
- Xinjie Lu & Feng Ma & Jiqian Wang & Jing Liu, 2022. "Forecasting oil futures realized range‐based volatility with jumps, leverage effect, and regime switching: New evidence from MIDAS models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(4), pages 853-868, July.
- Proietti, Tommaso & Giovannelli, Alessandro & Ricchi, Ottavio & Citton, Ambra & Tegami, Christían & Tinti, Cristina, 2021.
"Nowcasting GDP and its components in a data-rich environment: The merits of the indirect approach,"
International Journal of Forecasting, Elsevier, vol. 37(4), pages 1376-1398.
- Alessandro Giovannelli & Tommaso Proietti & Ambra Citton & Ottavio Ricchi & Cristian Tegami & Cristina Tinti, 2020. "Nowcasting GDP and its Components in a Data-rich Environment: the Merits of the Indirect Approach," CEIS Research Paper 489, Tor Vergata University, CEIS, revised 30 May 2020.
- Chambers, Marcus J., 2016.
"The estimation of continuous time models with mixed frequency data,"
Journal of Econometrics, Elsevier, vol. 193(2), pages 390-404.
- Chambers, MJ, 2016. "The Estimation of Continuous Time Models with Mixed Frequency Data," Economics Discussion Papers 15988, University of Essex, Department of Economics.
- Feng Ma & Chao Liang & Yuanhui Ma & M.I.M. Wahab, 2020. "Cryptocurrency volatility forecasting: A Markov regime‐switching MIDAS approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(8), pages 1277-1290, December.
- Benedikt Maas, 2020.
"Short‐term forecasting of the US unemployment rate,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(3), pages 394-411, April.
- Maas, Benedikt, 2019. "Short-term forecasting of the US unemployment rate," MPRA Paper 94066, University Library of Munich, Germany.
- Sévi, Benoît, 2013.
"An empirical analysis of the downside risk-return trade-off at daily frequency,"
Economic Modelling, Elsevier, vol. 31(C), pages 189-197.
- Benoît Sévi, 2013. "An empirical analysis of the downside risk-return trade-off at daily frequency," Post-Print hal-01500860, HAL.
- Lucian-Liviu Albu & Radu Lupu & Adrian Cantemir Calin, 2015. "Interactions between financial markets and macroeconomic variables in EU: a nonlinear modeling approach," ERSA conference papers ersa15p685, European Regional Science Association.
- Ghysels, Eric & Ball, Ryan, 2017. "Automated Earnings Forecasts:- Beat Analysts or Combine and Conquer?," CEPR Discussion Papers 12179, C.E.P.R. Discussion Papers.
- Matěj Liberda, 2017. "Mixed-frequency Drivers of Precious Metal Prices," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 65(6), pages 2007-2015.
- Kihwan Kim & Norman Swanson, 2013. "Diffusion Index Model Specification and Estimation Using Mixed Frequency Datasets," Departmental Working Papers 201315, Rutgers University, Department of Economics.
- Maghyereh Aktham & Sweidan Osama & Awartani Basel, 2020. "Asymmetric Responses of Economic Growth to Daily Oil Price Changes: New Global Evidence from Mixed-data Sampling Approach," Review of Economics, De Gruyter, vol. 71(2), pages 81-99, August.
- Khalaf, Lynda & Kichian, Maral & Saunders, Charles J. & Voia, Marcel, 2021.
"Dynamic panels with MIDAS covariates: Nonlinearity, estimation and fit,"
Journal of Econometrics, Elsevier, vol. 220(2), pages 589-605.
- Lynda Khalaf & Maral Kichian & Charles Saunders & Marcel Voia, 2021. "Dynamic panels with MIDAS covariates: Nonlinearity, estimation and fit," Post-Print hal-03528880, HAL.
- Ghysels, Eric & Wright, Jonathan H., 2009.
"Forecasting Professional Forecasters,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 504-516.
- Eric Ghysels & Jonathan H. Wright, 2006. "Forecasting professional forecasters," Finance and Economics Discussion Series 2006-10, Board of Governors of the Federal Reserve System (U.S.).
- Alberto Plazzi & Walter Torous & Rossen Valkanov, 2008. "The Cross‐Sectional Dispersion of Commercial Real Estate Returns and Rent Growth: Time Variation and Economic Fluctuations," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 36(3), pages 403-439, September.
- Ulrich Gunter & Irem Önder & Stefan Gindl, 2019. "Exploring the predictive ability of LIKES of posts on the Facebook pages of four major city DMOs in Austria," Tourism Economics, , vol. 25(3), pages 375-401, May.
- Lv, Wendai & Qi, Jipeng & Feng, Jing, 2023. "Economic policy uncertainty and environmental governance company volatility: Evidence from China," Research in International Business and Finance, Elsevier, vol. 64(C).
- Adam Clements & Annastiina Silvennoinen, 2009. "On the economic benefit of utility based estimation of a volatility model," NCER Working Paper Series 44, National Centre for Econometric Research.
- Berger, Philip G., 2011. "Challenges and opportunities in disclosure research—A discussion of ‘the financial reporting environment: Review of the recent literature’," Journal of Accounting and Economics, Elsevier, vol. 51(1), pages 204-218.
- Laine, Olli-Matti & Lindblad, Annika, 2020. "Nowcasting Finnish GDP growth using financial variables: a MIDAS approach," BoF Economics Review 4/2020, Bank of Finland.
- Kerssenfischer, Mark & Schmeling, Maik, 2024.
"What moves markets?,"
Journal of Monetary Economics, Elsevier, vol. 145(C).
- Kerssenfischer, Mark & Schmeling, Maik, 2022. "What moves markets?," Discussion Papers 16/2022, Deutsche Bundesbank.
- repec:hum:wpaper:sfb649dp2011-059 is not listed on IDEAS
- repec:hum:wpaper:sfb649dp2012-034 is not listed on IDEAS
- Pradeep Mishra & Khder Alakkari & Mostafa Abotaleb & Pankaj Kumar Singh & Shilpi Singh & Monika Ray & Soumitra Sankar Das & Umme Habibah Rahman & Ali J. Othman & Nazirya Alexandrovna Ibragimova & Gulf, 2021. "Nowcasting India Economic Growth Using a Mixed-Data Sampling (MIDAS) Model (Empirical Study with Economic Policy Uncertainty–Consumer Prices Index)," Data, MDPI, vol. 6(11), pages 1-15, November.
- S. Garg & Vipul, 2014. "Volatility forecasting performance of two-scale realized volatility," Applied Financial Economics, Taylor & Francis Journals, vol. 24(17), pages 1111-1121, September.
- Ghysels, Eric & Sohn, Bumjean, 2009. "Which power variation predicts volatility well?," Journal of Empirical Finance, Elsevier, vol. 16(4), pages 686-700, September.
- J. Isaac Miller, 2016.
"Conditionally Efficient Estimation of Long-Run Relationships Using Mixed-Frequency Time Series,"
Econometric Reviews, Taylor & Francis Journals, vol. 35(6), pages 1142-1171, June.
- J. Isaac Miller, 2011. "Conditionally Efficient Estimation of Long-run Relationships Using Mixed-frequency Time Series," Working Papers 1103, Department of Economics, University of Missouri, revised 30 May 2012.
- Polat, Onur & Demirer, Riza & Ekşi, İbrahim Halil, 2024. "What drives green betas? Climate uncertainty or speculation," Finance Research Letters, Elsevier, vol. 60(C).
- Byounghyun Jeon & Sung Won Seo & Jun Sik Kim, 2020. "Uncertainty and the volatility forecasting power of option‐implied volatility," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(7), pages 1109-1126, July.
- Xu, Qifa & Chen, Lu & Jiang, Cuixia & Yuan, Jing, 2018. "Measuring systemic risk of the banking industry in China: A DCC-MIDAS-t approach," Pacific-Basin Finance Journal, Elsevier, vol. 51(C), pages 13-31.
- He, Yongda & Lin, Boqiang, 2018. "Forecasting China's total energy demand and its structure using ADL-MIDAS model," Energy, Elsevier, vol. 151(C), pages 420-429.
- LUPU, Radu & CALIN, Adrian Cantemir, 2014. "A Mixed Frequency Analysis Of Connections Between Macroeconomic Variables And Stock Markets In Central And Eastern Europe," Studii Financiare (Financial Studies), Centre of Financial and Monetary Research "Victor Slavescu", vol. 18(2), pages 69-79.
- Viceira, Luis M., 2012. "Bond risk, bond return volatility, and the term structure of interest rates," International Journal of Forecasting, Elsevier, vol. 28(1), pages 97-117.
- Torun, Erdost & Chang, Tzu-Pu & Chou, Ray Y., 2020. "Causal relationship between spot and futures prices with multiple time horizons: A nonparametric wavelet Granger causality test," Research in International Business and Finance, Elsevier, vol. 52(C).
- Marcin Kacperczyk & Paul Damien & Stephen G. Walker, 2013. "A new class of Bayesian semi-parametric models with applications to option pricing," Quantitative Finance, Taylor & Francis Journals, vol. 13(6), pages 967-980, May.
- Qian, Hang, 2010. "Linear regression using both temporally aggregated and temporally disaggregated data: Revisited," MPRA Paper 32686, University Library of Munich, Germany.
- Jianhao Lin & Jiacheng Fan & Yifan Zhang & Liangyuan Chen, 2023. "Real‐time macroeconomic projection using narrative central bank communication," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(2), pages 202-221, March.
- Zhao, Ling, 2023. "Global economic policy uncertainty and oil futures volatility prediction," Finance Research Letters, Elsevier, vol. 54(C).
- Adam E Clements & Ayesha Scott & Annastiina Silvennoinen, 2012. "Forecasting multivariate volatility in larger dimensions: some practical issues," NCER Working Paper Series 80, National Centre for Econometric Research.
- Stefan Gebauer, 2017. "The Use of Financial Market Variables in Forecasting," DIW Roundup: Politik im Fokus 115, DIW Berlin, German Institute for Economic Research.
- Chun Liu & John M. Maheu, 2009.
"Forecasting realized volatility: a Bayesian model-averaging approach,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(5), pages 709-733.
- Chun Liu & John M Maheu, 2008. "Forecasting Realized Volatility: A Bayesian Model Averaging Approach," Working Papers tecipa-313, University of Toronto, Department of Economics.
- Ghysels, Eric, 2016. "Macroeconomics and the reality of mixed frequency data," Journal of Econometrics, Elsevier, vol. 193(2), pages 294-314.
- Herrera, Ana María & Hu, Liang & Pastor, Daniel, 2018. "Forecasting crude oil price volatility," International Journal of Forecasting, Elsevier, vol. 34(4), pages 622-635.
- Hautsch, Nikolaus & Kyj, Lada M. & Malec, Peter, 2011.
"The merit of high-frequency data in portfolio allocation,"
SFB 649 Discussion Papers
2011-059, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Hautsch, Nikolaus & Kyj, Lada M. & Malec, Peter, 2011. "The merit of high-frequency data in portfolio allocation," CFS Working Paper Series 2011/24, Center for Financial Studies (CFS).
- Dossani, Asad, 2024. "Monetary policy and currency variance risk premia," Research in International Business and Finance, Elsevier, vol. 69(C).
- Belén Nieto & Alfonso Novales & Gonzalo Rubio, 2015.
"Macroeconomic and Financial Determinants of the Volatility of Corporate Bond Returns,"
Quarterly Journal of Finance (QJF), World Scientific Publishing Co. Pte. Ltd., vol. 5(04), pages 1-41, December.
- Belén Nieto & Alfonso Novales Cinca & Gonzalo Rubio, 2014. "Macroeconomic and Financial Determinants of the Volatility of Corporate Bond Returns," Documentos de Trabajo del ICAE 2014-25, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Dimitrios P. Louzis & Spyros Xanthopoulos-Sisinis & Apostolos P. Refenes, 2012.
"Stock index realized volatility forecasting in the presence of heterogeneous leverage effects and long range dependence in the volatility of realized volatility,"
Applied Economics, Taylor & Francis Journals, vol. 44(27), pages 3533-3550, September.
- Dimitrios Louzis & Spyros Xanthopoulos-Sisinis & Apostolos Refenes, 2011. "Stock index realized volatility forecasting in the presence of heterogeneous leverage effects and long range dependence in the volatility of realized volatility," Post-Print hal-00709559, HAL.
- Ghysels, Eric & Qian, Hang, 2019. "Estimating MIDAS regressions via OLS with polynomial parameter profiling," Econometrics and Statistics, Elsevier, vol. 9(C), pages 1-16.
- Zeng, Qing & Zhang, Jixiang & Zhong, Juandan, 2024. "China's futures market volatility and sectoral stock market volatility prediction," Energy Economics, Elsevier, vol. 132(C).
- Ralf Becker & Denise R. Osborn, 2012.
"Weighted Smooth Transition Regressions,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(5), pages 795-811, August.
- Ralf Becker & Denise Osborn, 2007. "Weighted smooth transition regressions," Economics Discussion Paper Series 0724, Economics, The University of Manchester.
- Smales, L.A., 2021. "Macroeconomic news and treasury futures return volatility: Do treasury auctions matter?," Global Finance Journal, Elsevier, vol. 48(C).
- Wegmüller, Philipp & Glocker, Christian & Guggia, Valentino, 2023.
"Weekly economic activity: Measurement and informational content,"
International Journal of Forecasting, Elsevier, vol. 39(1), pages 228-243.
- Philipp Wegmüller & Christian Glocker & Valentino Guggia, 2021. "Weekly Economic Activity: Measurement and Informational Content," WIFO Working Papers 627, WIFO.
- Abdul-Aziz Ibn Musah & Jianguo Du & Hira Salah Ud din Khan & Alhassan Alolo Abdul-Rasheed Akeji, 2018. "The Asymptotic Decision Scenarios of an Emerging Stock Exchange Market: Extreme Value Theory and Artificial Neural Network," Risks, MDPI, vol. 6(4), pages 1-24, November.
- Degiannakis, Stavros & Filis, George, 2018. "Forecasting oil prices: High-frequency financial data are indeed useful," Energy Economics, Elsevier, vol. 76(C), pages 388-402.
- Dirk Drechsel & Stefan Neuwirth, 2016. "Taming volatile high frequency data with long lag structure: An optimal filtering approach for forecasting," KOF Working papers 16-407, KOF Swiss Economic Institute, ETH Zurich.
- Lee A. Smales, 2022. "The influence of policy uncertainty on exchange rate forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(5), pages 997-1016, August.
- Andrew J. Patton & Kevin Sheppard, 2015. "Good Volatility, Bad Volatility: Signed Jumps and The Persistence of Volatility," The Review of Economics and Statistics, MIT Press, vol. 97(3), pages 683-697, July.
- Shuting Liu & Qifa Xu & Cuixia Jiang, 2021. "Systemic risk of China’s commercial banks during financial turmoils in 2010-2020: A MIDAS-QR based CoVaR approach," Applied Economics Letters, Taylor & Francis Journals, vol. 28(18), pages 1600-1609, October.
- Adam Clements & Ralf Becker, 2009. "A nonparametric approach to forecasting realized volatility," NCER Working Paper Series 43, National Centre for Econometric Research.
- Rong Fu & Luze Xie & Tao Liu & Juan Huang & Binbin Zheng, 2022. "Chinese Economic Growth Projections Based on Mixed Data of Carbon Emissions under the COVID-19 Pandemic," Sustainability, MDPI, vol. 14(24), pages 1-16, December.
- Virbickaitė, Audronė & Ausín, M. Concepción & Galeano, Pedro, 2020. "Copula stochastic volatility in oil returns: Approximate Bayesian computation with volatility prediction," Energy Economics, Elsevier, vol. 92(C).
- Qian, Hang, 2010. "Vector autoregression with varied frequency data," MPRA Paper 34682, University Library of Munich, Germany.
- George Filis & Stavros Degiannakis & Zacharias Bragoudakis, 2022. "Forecasting macroeconomic indicators for Eurozone and Greece: How useful are the oil price assumptions?," Working Papers 296, Bank of Greece.
- Qian, Hang, 2016. "A computationally efficient method for vector autoregression with mixed frequency data," Journal of Econometrics, Elsevier, vol. 193(2), pages 433-437.
- Schumacher, Christian, 2016. "A comparison of MIDAS and bridge equations," International Journal of Forecasting, Elsevier, vol. 32(2), pages 257-270.
- Tseng-Chan Tseng & Hung-Cheng Lai & Cha-Fei Lin, 2012. "The impact of overnight returns on realized volatility," Applied Financial Economics, Taylor & Francis Journals, vol. 22(5), pages 357-364, March.
- Cheng, Mingmian & Swanson, Norman R. & Yang, Xiye, 2021. "Forecasting volatility using double shrinkage methods," Journal of Empirical Finance, Elsevier, vol. 62(C), pages 46-61.
- Julien Chevallier & Bilel Sanhaji, 2023.
"Jump-Robust Realized-GARCH-MIDAS-X Estimators for Bitcoin and Ethereum Volatility Indices,"
Stats, MDPI, vol. 6(4), pages 1-32, December.
- Julien Chevallier & Bilel Sanhaji, 2023. "Jump-Robust Realized-GARCH-MIDAS-X Estimators for Bitcoin and Ethereum Volatility Indices," Post-Print halshs-04344131, HAL.
- Christian T. Brownlees & Giampiero Gallo, 2007. "Volatility Forecasting Using Explanatory Variables and Focused Selection Criteria," Econometrics Working Papers Archive wp2007_04, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
- Wink Junior, Marcos Vinício & Pereira, Pedro Luiz Valls, 2011. "Modeling and Forecasting of Realized Volatility: Evidence from Brazil," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 31(2), December.
- Huiwen Lai & Eric C. Y. Ng, 2020. "On business cycle forecasting," Frontiers of Business Research in China, Springer, vol. 14(1), pages 1-26, December.
- Mahmut Gunay, 2020. "Nowcasting Turkish GDP with MIDAS: Role of Functional Form of the Lag Polynomial," Working Papers 2002, Research and Monetary Policy Department, Central Bank of the Republic of Turkey.
- Nobuyuki Hanaki & Cars Hommes & Dávid Kopányi & Anita Kopányi-Peuker & Jan Tuinstra, 2023. "Forecasting returns instead of prices exacerbates financial bubbles," Experimental Economics, Springer;Economic Science Association, vol. 26(5), pages 1185-1213, November.
- Robert Akunga & Ahmad Hassan Ahmad & Simeon Coleman, 2023. "Financial market integration in sub‐Saharan Africa: How important is contagion?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(4), pages 3637-3653, October.
- Diego J. Pedregal & Javier J. Pérez & Antonio Sánchez Fuentes, 2014. "A Tookit to strengthen Government," Hacienda Pública Española / Review of Public Economics, IEF, vol. 211(4), pages 117-146, December.
- Wichitaksorn, Nuttanan, 2022. "Analyzing and forecasting Thai macroeconomic data using mixed-frequency approach," Journal of Asian Economics, Elsevier, vol. 78(C).
- Elena Andreou & Eric Ghysels, 2004. "Monitoring for Disruptions in Financial Markets," CIRANO Working Papers 2004s-26, CIRANO.
- Wang, Yuejing & Ye, Wuyi & Jiang, Ying & Liu, Xiaoquan, 2024. "Volatility prediction for the energy sector with economic determinants: Evidence from a hybrid model," International Review of Financial Analysis, Elsevier, vol. 92(C).
- Wang, Zijun & Khan, M. Moosa, 2017. "Market states and the risk-return tradeoff," The Quarterly Review of Economics and Finance, Elsevier, vol. 65(C), pages 314-327.
- Xu, Qifa & Chen, Lu & Jiang, Cuixia & Yu, Keming, 2020. "Mixed data sampling expectile regression with applications to measuring financial risk," Economic Modelling, Elsevier, vol. 91(C), pages 469-486.
- Kuzin, Vladimir N. & Marcellino, Massimiliano & Schumacher, Christian, 2009. "MIDAS versus mixed-frequency VAR: nowcasting GDP in the euro area," Discussion Paper Series 1: Economic Studies 2009,07, Deutsche Bundesbank.
- Gomes, Pedro & Taamouti, Abderrahim, 2016. "In search of the determinants of European asset market comovements," International Review of Economics & Finance, Elsevier, vol. 44(C), pages 103-117.
- Teresa Leal & Diego Pedregal & Javier Pérez, 2011. "Short-term monitoring of the Spanish government balance," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 2(1), pages 97-119, March.
- Torben G. Andersen & Luca Benzoni, 2008. "Realized volatility," Working Paper Series WP-08-14, Federal Reserve Bank of Chicago.
- Todorova, Neda & Souček, Michael, 2014. "The impact of trading volume, number of trades and overnight returns on forecasting the daily realized range," Economic Modelling, Elsevier, vol. 36(C), pages 332-340.
- Selma Toker & Nimet Özbay & Kristofer Månsson, 2022. "Mixed data sampling regression: Parameter selection of smoothed least squares estimator," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(4), pages 718-751, July.
- Michael P. Clements & Ana Beatriz Galvão, 2007.
"Macroeconomic Forecasting with Mixed Frequency Data: Forecasting US Output Growth,"
Working Papers
616, Queen Mary University of London, School of Economics and Finance.
- Michael P. Clements & Ana Beatriz Galvão, 2007. "Macroeconomic Forecasting with Mixed Frequency Data: Forecasting US Output Growth," Working Papers 616, Queen Mary University of London, School of Economics and Finance.
- Cui, Xiaomeng & Gafarov, Bulat & Ghanem, Dalia & Kuffner, Todd, 2024. "On model selection criteria for climate change impact studies," Journal of Econometrics, Elsevier, vol. 239(1).
- Holmberg, Johan, 2021. "Earnings and Employment Dynamics: Capturing Cyclicality using Mixed Frequency Data," Umeå Economic Studies 991, Umeå University, Department of Economics.
- Jayawardena, Nirodha I. & Todorova, Neda & Li, Bin & Su, Jen-Je & Gau, Yin-Feng, 2022. "Risk-return trade-off in the Australian Securities Exchange: Accounting for overnight effects, realized higher moments, long-run relations, and fractional cointegration," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 384-401.