IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this software component

Citations of

Cathy W. S. Chen

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Working papers

  1. Chen, Cathy W.S. & Gerlach, Richard & Lin, Liou-Yan, 2012. "Bayesian Semi-parametric Expected Shortfall Forecasting in Financial M arkets," Working Papers 12 BAWP, University of Sydney Business School, Discipline of Business Analytics.

    Cited by:

    1. Genya Kobayashi, 2016. "Skew exponential power stochastic volatility model for analysis of skewness, non-normal tails, quantiles and expectiles," Computational Statistics, Springer, vol. 31(1), pages 49-88, March.

  2. Cathy W. S. Chen & Richard Gerlach & Bruce B. K. Hwang & Michael McAleer, 2011. "Forecasting Value-at-Risk Using Nonlinear Regression Quantiles and the Intra-day Range," Documentos de Trabajo del ICAE 2011-16, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.

    Cited by:

    1. Fuertes, Ana-Maria & Olmo, Jose, 2013. "Optimally harnessing inter-day and intra-day information for daily value-at-risk prediction," International Journal of Forecasting, Elsevier, vol. 29(1), pages 28-42.
    2. Kim, Minjo & Lee, Sangyeol, 2016. "Nonlinear expectile regression with application to Value-at-Risk and expected shortfall estimation," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 1-19.
    3. CHEN, Cathy W.S. & WENG, Monica M.C. & WATANABE, Toshiaki, 2015. "Employing Bayesian Forecasting of Value-at-Risk to Determine an Appropriate Model for Risk Management," Discussion paper series HIAS-E-16, Hitotsubashi Institute for Advanced Study, Hitotsubashi University.
    4. Qifa Xu & Cuixia Jiang & Yaoyao He, 2016. "An exponentially weighted quantile regression via SVM with application to estimating multiperiod VaR," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 25(2), pages 285-320, June.
    5. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.

  3. Chen, Cathy W.S. & Gerlach, Richard & Lee, Wcw & Lin, Edward M.H., 2011. "Bayesian Forecasting for Financial Risk Management, Pre and Post the Global Financial Crisis," Working Papers 03/2011, University of Sydney Business School, Discipline of Business Analytics.

    Cited by:

    1. Chen, Cathy W.S. & Gerlach, Richard & Hwang, Bruce B.K. & McAleer, Michael, 2012. "Forecasting Value-at-Risk using nonlinear regression quantiles and the intra-day range," International Journal of Forecasting, Elsevier, vol. 28(3), pages 557-574.
    2. Chang Liu & Raja Nassar & Min Guo, 2015. "A Method of Retail Mortgage Stress Testing: Based on Time‐Frame and Magnitude Analysis," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(4), pages 261-274, 07.
    3. Pilar Abad Romero & Sonia Benito Muela & Miguel Angel Sánchez Granero & Carmen López, 2013. "Evaluating the performance of the skewed distributions to forecast Value at Risk in the Global Financial Crisis," Documentos de Trabajo del ICAE 2013-40, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    4. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    5. Cathy Chen & Feng-Chi Liu & Mike So, 2013. "Threshold variable selection of asymmetric stochastic volatility models," Computational Statistics, Springer, vol. 28(6), pages 2415-2447, December.
    6. Kim, Minjo & Lee, Sangyeol, 2016. "Nonlinear expectile regression with application to Value-at-Risk and expected shortfall estimation," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 1-19.
    7. Mauro Bernardi & Leopoldo Catania & Lea Petrella, 2014. "Are news important to predict large losses?," Papers 1410.6898, arXiv.org, revised Oct 2014.
    8. Chi Ming Wong & Lei Lam Olivia Ting, 2016. "A Quantile Regression Approach to the Multiple Period Value at Risk Estimation," Journal of Economics and Management, College of Business, Feng Chia University, Taiwan, vol. 12(1), pages 1-35, February.

  4. Chan, Nancy Y. C. & Chen, Cathy W.S. & Gerlach, Richard, 2009. "Bayesian time-varying quantile forecasting for Value-at-Risk in financial markets," Working Papers 9 OMEWP, University of Sydney Business School, Discipline of Business Analytics.

    Cited by:

    1. CHEN, Cathy W.S. & WENG, Monica M.C. & WATANABE, Toshiaki, 2015. "Employing Bayesian Forecasting of Value-at-Risk to Determine an Appropriate Model for Risk Management," Discussion paper series HIAS-E-16, Hitotsubashi Institute for Advanced Study, Hitotsubashi University.
    2. Derek Bunn, Arne Andresen, Dipeng Chen, Sjur Westgaard, 2016. "Analysis and Forecasting of Electricty Price Risks with Quantile Factor Models," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    3. Korobilis, Dimitris, 2015. "Quantile forecasts of inflation under model uncertainty," MPRA Paper 64341, University Library of Munich, Germany.
    4. Hagfors, Lars Ivar & Bunn, Derek & Kristoffersen, Eline & Staver, Tiril Toftdahl & Westgaard, Sjur, 2016. "Modeling the UK electricity price distributions using quantile regression," Energy, Elsevier, vol. 102(C), pages 231-243.
    5. Chen, C.W.S. & Gerlach, R. & Hwang, B.B.K. & McAleer, M.J., 2011. "Forecasting Value-at-Risk Using Nonlinear Regression Quantiles and the Intraday Range," Econometric Institute Research Papers EI 2011-17, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    6. Cathy Chen & Richard Gerlach, 2013. "Semi-parametric quantile estimation for double threshold autoregressive models with heteroskedasticity," Computational Statistics, Springer, vol. 28(3), pages 1103-1131, June.
    7. Alhamzawi, Rahim & Yu, Keming, 2013. "Conjugate priors and variable selection for Bayesian quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 209-219.
    8. Richard Gerlach & Shelton Peiris & Edward M. H. Lin, 2016. "Bayesian estimation and inference for log-ACD models," Computational Statistics, Springer, vol. 31(1), pages 25-48, March.
    9. Liu, Xiaochun, 2013. "Markov-Switching Quantile Autoregression," MPRA Paper 55800, University Library of Munich, Germany.
    10. So, Mike K.P. & Chung, Ray S.W., 2015. "Statistical inference for conditional quantiles in nonlinear time series models," Journal of Econometrics, Elsevier, vol. 189(2), pages 457-472.
    11. Richard Gerlach & Zudi Lu & Hai Huang, 2013. "Exponentially Smoothing the Skewed Laplace Distribution for Value‐at‐Risk Forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(6), pages 534-550, 09.
    12. Chi Ming Wong & Lei Lam Olivia Ting, 2016. "A Quantile Regression Approach to the Multiple Period Value at Risk Estimation," Journal of Economics and Management, College of Business, Feng Chia University, Taiwan, vol. 12(1), pages 1-35, February.
    13. Mauro Bernardi & Ghislaine Gayraud & Lea Petrella, 2013. "Bayesian inference for CoVaR," Papers 1306.2834, arXiv.org, revised Nov 2013.
    14. Komunjer, Ivana, 2013. "Quantile Prediction," Handbook of Economic Forecasting, Elsevier.
    15. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    16. Liu, Xiaochun & Luger, Richard, 2015. "Unfolded GARCH models," Journal of Economic Dynamics and Control, Elsevier, vol. 58(C), pages 186-217.
    17. Huarng, Kun-Huang & Yu, Tiffany Hui-Kuang, 2014. "A new quantile regression forecasting model," Journal of Business Research, Elsevier, vol. 67(5), pages 779-784.
    18. Genya Kobayashi, 2016. "Skew exponential power stochastic volatility model for analysis of skewness, non-normal tails, quantiles and expectiles," Computational Statistics, Springer, vol. 31(1), pages 49-88, March.
    19. Yuta Kurose & Yasuhiro Omori, 2012. "Bayesian Analysis of Time-Varying Quantiles Using a Smoothing Spline," CIRJE F-Series CIRJE-F-845, CIRJE, Faculty of Economics, University of Tokyo.

Articles

  1. Chen, Cathy W.S. & Gerlach, Richard & Lin, Edward M.H., 2014. "Bayesian estimation of smoothly mixing time-varying parameter GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 194-209.

    Cited by:

    1. Chen, Cathy W.S. & Lee, Sangyeol, 2016. "Generalized Poisson autoregressive models for time series of counts," Computational Statistics & Data Analysis, Elsevier, vol. 99(C), pages 51-67.

  2. Cathy Chen & Feng-Chi Liu & Mike So, 2013. "Threshold variable selection of asymmetric stochastic volatility models," Computational Statistics, Springer, vol. 28(6), pages 2415-2447, December.

    Cited by:

    1. Genya Kobayashi, 2016. "Skew exponential power stochastic volatility model for analysis of skewness, non-normal tails, quantiles and expectiles," Computational Statistics, Springer, vol. 31(1), pages 49-88, March.

  3. Cathy Chen & Shu-Yu Chen & Sangyeol Lee, 2013. "Bayesian Unit Root Test in Double Threshold Heteroskedastic Models," Computational Economics, Springer;Society for Computational Economics, vol. 42(4), pages 471-490, December.

    Cited by:

    1. Cathy W. S. Chen & Sangyeol Lee & Shu-Yu Chen, 2016. "Local non-stationarity test in mean for Markov switching GARCH models: an approximate Bayesian approach," Computational Statistics, Springer, vol. 31(1), pages 1-24, March.
    2. Shyh-Wei Chen & Chi-Sheng Hsu & Cyun-Jhen Pen, 2016. "Are Inflation Rates Mean-reverting Processes? Evidence from Six Asian Countries," Journal of Economics and Management, College of Business, Feng Chia University, Taiwan, vol. 12(1), pages 119-155, February.
    3. Vosseler, Alexander, 2016. "Bayesian model selection for unit root testing with multiple structural breaks," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 616-630.

  4. Cathy Chen & Richard Gerlach, 2013. "Semi-parametric quantile estimation for double threshold autoregressive models with heteroskedasticity," Computational Statistics, Springer, vol. 28(3), pages 1103-1131, June.

    Cited by:

    1. Cathy Chen & Simon Lin & Philip Yu, 2012. "Smooth Transition Quantile Capital Asset Pricing Models with Heteroscedasticity," Computational Economics, Springer;Society for Computational Economics, vol. 40(1), pages 19-48, June.
    2. Vahid Nassiri & Ignace Loris, 2014. "An efficient algorithm for structured sparse quantile regression," Computational Statistics, Springer, vol. 29(5), pages 1321-1343, October.

  5. Chan, J.S.K. & Lam, C.P.Y. & Yu, P.L.H. & Choy, S.T.B. & Chen, C.W.S., 2012. "A Bayesian conditional autoregressive geometric process model for range data," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3006-3019.

    Cited by:

    1. Chan, Jennifer So Kuen & Wan, Wai Yin, 2014. "Multivariate generalized Poisson geometric process model with scale mixtures of normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 127(C), pages 72-87.

  6. Cathy Chen & Simon Lin & Philip Yu, 2012. "Smooth Transition Quantile Capital Asset Pricing Models with Heteroscedasticity," Computational Economics, Springer;Society for Computational Economics, vol. 40(1), pages 19-48, June.

    Cited by:

    1. Cathy Chen & Richard Gerlach, 2013. "Semi-parametric quantile estimation for double threshold autoregressive models with heteroskedasticity," Computational Statistics, Springer, vol. 28(3), pages 1103-1131, June.
    2. Derek Bunn, Arne Andresen, Dipeng Chen, Sjur Westgaard, 2016. "Analysis and Forecasting of Electricty Price Risks with Quantile Factor Models," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).

  7. Lin, Edward M.H. & Chen, Cathy W.S. & Gerlach, Richard, 2012. "Forecasting volatility with asymmetric smooth transition dynamic range models," International Journal of Forecasting, Elsevier, vol. 28(2), pages 384-399.

    Cited by:

    1. Chen, Cathy W.S. & Gerlach, Richard & Lin, Edward M.H., 2014. "Bayesian estimation of smoothly mixing time-varying parameter GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 194-209.
    2. Juan Benjamín Duarte Duarte & Juan Manuel Mascare?nas Pérez-Iñigo, 2014. "Comprobación de la eficiencia débil en los principales mercados financieros latinoamericanos," ESTUDIOS GERENCIALES, UNIVERSIDAD ICESI, November.
    3. Leandro Maciel, 2012. "A Hybrid Fuzzy GJR-GARCH Modeling Approach for Stock Market Volatility Forecasting," Brazilian Review of Finance, Brazilian Society of Finance, vol. 10(3), pages 337-367.
    4. Leandro Maciel & Fernando Gomide & Rosangela Ballini, 2016. "Evolving Fuzzy-GARCH Approach for Financial Volatility Modeling and Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 48(3), pages 379-398, October.
    5. CHEN, Cathy W.S. & WENG, Monica M.C. & WATANABE, Toshiaki, 2015. "Employing Bayesian Forecasting of Value-at-Risk to Determine an Appropriate Model for Risk Management," Discussion paper series HIAS-E-16, Hitotsubashi Institute for Advanced Study, Hitotsubashi University.
    6. Leandro Maciel & Fernando Gomide & Rosangela Ballini, 2014. "An Evolving Fuzzy-Garch Approach Forfinancial Volatility Modeling And Forecasting," Anais do XL Encontro Nacional de Economia [Proceedings of the 40th Brazilian Economics Meeting] 138, ANPEC - Associação Nacional dos Centros de Pósgraduação em Economia [Brazilian Association of Graduate Programs in Economics].

  8. Cathy W.S. Chen & Richard Gerlach & Edward M. H. Lin & W. C. W. Lee, 2012. "Bayesian Forecasting for Financial Risk Management, Pre and Post the Global Financial Crisis," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 31(8), pages 661-687, December.
    See citations under working paper version above.
  9. Chen, Cathy W.S. & Gerlach, Richard & Hwang, Bruce B.K. & McAleer, Michael, 2012. "Forecasting Value-at-Risk using nonlinear regression quantiles and the intra-day range," International Journal of Forecasting, Elsevier, vol. 28(3), pages 557-574.
    See citations under working paper version above.
  10. Gerlach, Richard H. & Chen, Cathy W. S. & Chan, Nancy Y. C., 2011. "Bayesian Time-Varying Quantile Forecasting for Value-at-Risk in Financial Markets," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(4), pages 481-492.
    See citations under working paper version above.
  11. Cathy Chen & Feng Liu & Richard Gerlach, 2011. "Bayesian subset selection for threshold autoregressive moving-average models," Computational Statistics, Springer, vol. 26(1), pages 1-30, March.

    Cited by:

    1. Jouchi Nakajima & Mike West, 2013. "Bayesian Analysis of Latent Threshold Dynamic Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(2), pages 151-164, April.
    2. Philipp Piribauer, 2016. "Heterogeneity in spatial growth clusters," Empirical Economics, Springer, vol. 51(2), pages 659-680, September.

  12. Cathy W. S. Chen & Richard H. Gerlach & Ann M. H. Lin, 2011. "Multi-regime nonlinear capital asset pricing models," Quantitative Finance, Taylor & Francis Journals, vol. 11(9), pages 1421-1438, April.

    Cited by:

    1. Arısoy, Yakup Eser & Altay-Salih, Aslıhan & Akdeniz, Levent, 2015. "Aggregate volatility expectations and threshold CAPM," The North American Journal of Economics and Finance, Elsevier, vol. 34(C), pages 231-253.
    2. Cathy Chen & Simon Lin & Philip Yu, 2012. "Smooth Transition Quantile Capital Asset Pricing Models with Heteroscedasticity," Computational Economics, Springer;Society for Computational Economics, vol. 40(1), pages 19-48, June.

  13. Chen, Cathy W.S. & Chan, Jennifer S.K. & So, Mike K.P. & Lee, Kevin K.M., 2011. "Classification in segmented regression problems," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2276-2287, July.

    Cited by:

    1. Shiow-Lan Gau & Jean Dieu Tapsoba & Shen-Ming Lee, 2014. "Bayesian approach for mixture models with grouped data," Computational Statistics, Springer, vol. 29(5), pages 1025-1043, October.

  14. Lai, YiHao & Chen, Cathy W.S. & Gerlach, Richard, 2009. "Optimal dynamic hedging via copula-threshold-GARCH models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(8), pages 2609-2624.

    Cited by:

    1. Chia-Hsun Hsieh & Shian-Chang Huang, 2012. "Time-Varying Dependency and Structural Changes in Currency Markets," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 48(2), pages 94-127, March.
    2. Chang, Kuang-Liang, 2012. "The time-varying and asymmetric dependence between crude oil spot and futures markets: Evidence from the Mixture copula-based ARJI–GARCH model," Economic Modelling, Elsevier, vol. 29(6), pages 2298-2309.
    3. Serra, Teresa & Gil, Jose Maria, 2012. "Biodiesel as a motor fuel price stabilization mechanism," 2012 Conference, August 18-24, 2012, Foz do Iguacu, Brazil 126056, International Association of Agricultural Economists.
    4. Serra, Teresa & Gil, José M., 2012. "Biodiesel as a motor fuel price stabilization mechanism," Energy Policy, Elsevier, vol. 50(C), pages 689-698.
    5. Ahmed Ghorbel & Abdelwahed Trabelsi, 2012. "Optimal dynamic hedging strategy with futures oil markets via FIEGARCH-EVT copula models," International Journal of Managerial and Financial Accounting, Inderscience Enterprises Ltd, vol. 4(1), pages 1-28.
    6. Chang, Kuang-Liang, 2014. "The symmetrical and positive relationship between crude oil and nominal exchange rate returns," The North American Journal of Economics and Finance, Elsevier, vol. 29(C), pages 266-284.
    7. Jin Zhang & Dietmar Maringer, 2010. "Asset Pair-Copula Selection with Downside Risk Minimization," Working Papers 037, COMISEF.
    8. Serra, Teresa, 2011. "Volatility spillovers between food and energy markets: A semiparametric approach," Energy Economics, Elsevier, vol. 33(6), pages 1155-1164.
    9. Teresa Serra & José M. Gil, 2013. "Price volatility in food markets: can stock building mitigate price fluctuations?," European Review of Agricultural Economics, Foundation for the European Review of Agricultural Economics, vol. 40(3), pages 507-528, July.
    10. Lai, YiHao & Tseng, Jen-Ching, 2010. "The role of Chinese stock market in global stock markets: A safe haven or a hedge?," International Review of Economics & Finance, Elsevier, vol. 19(2), pages 211-218, April.
    11. Penikas, Henry, 2011. "Copula-Based Price Risk Hedging Models," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 22(2), pages 3-21.
    12. Allen, David E. & Gao, Jiti & McAleer, Michael, 2009. "Modelling and managing financial risk: An overview," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(8), pages 2521-2524.
    13. Serra, Teresa & Gil, Jose Maria, 2012. "Price volatility in food markets: can stock building mitigate price fluctuations?," 2012 Conference, August 18-24, 2012, Foz do Iguacu, Brazil 126055, International Association of Agricultural Economists.
    14. YiHao Lai, 2008. "Does Asymmetric Dependence Structure Matter? A Value-at-Risk View," International Journal of Business and Economics, College of Business, and College of Finance, Feng Chia University, Taichung, Taiwan, vol. 7(3), pages 249-268, December.
    15. Penikas, H., 2010. "Financial Applications of Copula-Models," Journal of the New Economic Association, New Economic Association, issue 7, pages 24-44.
    16. Zhiyuan Pan & Xianchao Sun, 2014. "Hedging Strategy Using Copula and Nonparametric Methods: Evidence from China Securities Index Futures," International Journal of Economics and Financial Issues, Econjournals, vol. 4(1), pages 107-121.
    17. Chen, Yi-Hsuan & Tu, Anthony H., 2013. "Estimating hedged portfolio value-at-risk using the conditional copula: An illustration of model risk," International Review of Economics & Finance, Elsevier, vol. 27(C), pages 514-528.
    18. Serra, Teresa, 2011. "Volatility Spillovers between Food and Energy Markets, A Semiparametric Approach," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 115997, European Association of Agricultural Economists.
    19. Chia-Hsun Hsieh & Shian-Chang Huang, 2012. "Time-Varying Dependency and Structural Changes in Currency Markets," Emerging Markets Finance and Trade, M.E. Sharpe, Inc., vol. 48(2), pages 94-127, March.
    20. Wei, Yu & Wang, Yudong & Huang, Dengshi, 2011. "A copula–multifractal volatility hedging model for CSI 300 index futures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4260-4272.

  15. Cathy W. S. Chen & Mike K. P. So & Edward M. H. Lin, 2009. "Volatility forecasting with double Markov switching GARCH models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(8), pages 681-697.

    Cited by:

    1. David Ardia & Lennart F. Hoogerheide, 2010. "Efficient Bayesian Estimation and Combination of GARCH-Type Models," Tinbergen Institute Discussion Papers 10-046/4, Tinbergen Institute.
    2. Cifter, Atilla, 2012. "Volatility Forecasting with Asymmetric Normal Mixture Garch Model: Evidence from South Africa," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 127-142, June.
    3. Haas Markus, 2010. "Skew-Normal Mixture and Markov-Switching GARCH Processes," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 14(4), pages 1-56, September.
    4. Liu, Qingfu & Wong, Ieokhou & An, Yunbi & Zhang, Jinqing, 2014. "Asymmetric Information and Volatility Forecasting in Commodity Futures Markets," Pacific-Basin Finance Journal, Elsevier, vol. 26(C), pages 79-97.
    5. Michael Funke & Chang Shu & Xiaoqiang Cheng & Sercan Eraslan, 2015. "Assessing the CNH-CNY pricing differential: role of fundamentals, contagion and policy," BIS Working Papers 492, Bank for International Settlements.
    6. Liu, Hsiang-Hsi & Chuang, Wen-I & Huang, Jih-Jeng & Chen, Yu-Hao, 2016. "The overconfident trading behavior of individual versus institutional investors," International Review of Economics & Finance, Elsevier, vol. 45(C), pages 518-539.
    7. Cathy W. S. Chen & Sangyeol Lee & Shu-Yu Chen, 2016. "Local non-stationarity test in mean for Markov switching GARCH models: an approximate Bayesian approach," Computational Statistics, Springer, vol. 31(1), pages 1-24, March.
    8. Chang, Kuang-Liang, 2012. "Volatility regimes, asymmetric basis effects and forecasting performance: An empirical investigation of the WTI crude oil futures market," Energy Economics, Elsevier, vol. 34(1), pages 294-306.
    9. Pierre-Julien Trombe & Pierre Pinson & Henrik Madsen, 2012. "A General Probabilistic Forecasting Framework for Offshore Wind Power Fluctuations," Energies, MDPI, Open Access Journal, vol. 5(3), pages 621, March.

  16. Chen, Cathy W.S. & Gerlach, Richard & Wei, D.C.M., 2009. "Bayesian causal effects in quantiles: Accounting for heteroscedasticity," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 1993-2007, April.

    Cited by:

    1. Caporin, Massimiliano & Pelizzon, Loriana & Ravazzolo, Francesco & Rigobon, Roberto, 2015. "Measuring sovereign contagion in Europe," SAFE Working Paper Series 103, Research Center SAFE - Sustainable Architecture for Finance in Europe, Goethe University Frankfurt.
    2. So, Mike K.P. & Chung, Ray S.W., 2015. "Statistical inference for conditional quantiles in nonlinear time series models," Journal of Econometrics, Elsevier, vol. 189(2), pages 457-472.
    3. Cathy Chen & Richard Gerlach, 2013. "Semi-parametric quantile estimation for double threshold autoregressive models with heteroskedasticity," Computational Statistics, Springer, vol. 28(3), pages 1103-1131, June.
    4. Genya Kobayashi, 2016. "Skew exponential power stochastic volatility model for analysis of skewness, non-normal tails, quantiles and expectiles," Computational Statistics, Springer, vol. 31(1), pages 49-88, March.
    5. Cathy Chen & Simon Lin & Philip Yu, 2012. "Smooth Transition Quantile Capital Asset Pricing Models with Heteroscedasticity," Computational Economics, Springer;Society for Computational Economics, vol. 40(1), pages 19-48, June.
    6. Yves S. Schüler, 2014. "Asymmetric Effects of Uncertainty over the Business Cycle: A Quantile Structural Vector Autoregressive Approach," Working Paper Series of the Department of Economics, University of Konstanz 2014-02, Department of Economics, University of Konstanz.
    7. Vahid Nassiri & Ignace Loris, 2014. "An efficient algorithm for structured sparse quantile regression," Computational Statistics, Springer, vol. 29(5), pages 1321-1343, October.

  17. Chen, Cathy W.S. & Gerlach, Richard & Cheng, Nick Y.P. & Yang, Y.L., 2009. "The impact of structural breaks on the integration of the ASEAN-5 stock markets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(8), pages 2654-2664.

    Cited by:

    1. Chien, Mei-Se & Lee, Chien-Chiang & Hu, Te-Chung & Hu, Hui-Ting, 2015. "Dynamic Asian stock market convergence: Evidence from dynamic cointegration analysis among China and ASEAN-5," Economic Modelling, Elsevier, vol. 51(C), pages 84-98.
    2. Kose, Nezir & Emirmahmutoglu, Furkan & Aksoy, Sezgin, 2012. "The interest rate–inflation relationship under an inflation targeting regime: The case of Turkey," Journal of Asian Economics, Elsevier, vol. 23(4), pages 476-485.
    3. Allen, David E. & Gao, Jiti & McAleer, Michael, 2009. "Modelling and managing financial risk: An overview," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(8), pages 2521-2524.
    4. Qin, Ruibing & Tian, Zheng & Jin, Hao & Zhang, Xiaowei, 2010. "Strong convergence rate of robust estimator of change point," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(10), pages 2026-2032.

  18. Chen, Cathy W.S. & Gerlach, Richard & Lin, Edward M.H., 2008. "Volatility forecasting using threshold heteroskedastic models of the intra-day range," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2990-3010, February.

    Cited by:

    1. Chen, Cathy W.S. & Gerlach, Richard & Hwang, Bruce B.K. & McAleer, Michael, 2012. "Forecasting Value-at-Risk using nonlinear regression quantiles and the intra-day range," International Journal of Forecasting, Elsevier, vol. 28(3), pages 557-574.
    2. Raggi, Davide & Bordignon, Silvano, 2012. "Long memory and nonlinearities in realized volatility: A Markov switching approach," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3730-3742.
    3. Chan, J.S.K. & Lam, C.P.Y. & Yu, P.L.H. & Choy, S.T.B. & Chen, C.W.S., 2012. "A Bayesian conditional autoregressive geometric process model for range data," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3006-3019.
    4. Amélie Charles, 2010. "The day-of-the week effects on the volatility: The role of the asymmetry," Post-Print hal-00771136, HAL.
    5. Chen, Qian & Gerlach, Richard H., 2013. "The two-sided Weibull distribution and forecasting financial tail risk," International Journal of Forecasting, Elsevier, vol. 29(4), pages 527-540.
    6. Tsiotas, Georgios, 2012. "On generalised asymmetric stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 151-172, January.
    7. Richard Gerlach & Shelton Peiris & Edward M. H. Lin, 2016. "Bayesian estimation and inference for log-ACD models," Computational Statistics, Springer, vol. 31(1), pages 25-48, March.
    8. Borovkova, Svetlana & Permana, Ferry J., 2009. "Implied volatility in oil markets," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2022-2039, April.

  19. Chen, Cathy W.S. & Gerlach, Richard H. & Tai, Amanda P.J., 2008. "Testing for nonlinearity in mean and volatility for heteroskedastic models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(3), pages 489-499.

    Cited by:

    1. Ledermann, Daniel & Alexander, Carol, 2012. "Further properties of random orthogonal matrix simulation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 83(C), pages 56-79.

  20. So, Mike K.P. & Chen, Cathy W.S. & Lee, Jen-Yu & Chang, Yi-Ping, 2008. "An empirical evaluation of fat-tailed distributions in modeling financial time series," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 77(1), pages 96-108.

    Cited by:

    1. Huang, Alex YiHou, 2010. "An optimization process in Value-at-Risk estimation," Review of Financial Economics, Elsevier, vol. 19(3), pages 109-116, August.
    2. Kostas Andriosopoulos & Nikos Nomikos, 2012. "Risk management in the energy markets and Value-at-Risk modelling: a Hybrid approach," RSCAS Working Papers 2012/47, European University Institute.

  21. Thomas C. Chiang & Cathy W.S. Chen & Mike K.P. So, 2007. "Asymmetric Return and Volatility Responses to Composite News from Stock Markets," Multinational Finance Journal, Multinational Finance Journal, vol. 11(3-4), pages 179-210, September.

    Cited by:

    1. Warren Dean & Robert Faff, 2011. "Feedback trading and the behavioural ICAPM: multivariate evidence across international equity and bond markets," Applied Financial Economics, Taylor & Francis Journals, vol. 21(22), pages 1665-1678.
    2. Aityan, Sergey K. & Ivanov-Schitz, Alexey K. & Izotov, Sergey S., 2010. "Time-shift asymmetric correlation analysis of global stock markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 20(5), pages 590-605, December.

  22. Chen, Cathy W.S. & Yang, Ming Jing & Gerlach, Richard & Jim Lo, H., 2006. "The asymmetric reactions of mean and volatility of stock returns to domestic and international information based on a four-regime double-threshold GARCH model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 366(C), pages 401-418.

    Cited by:

    1. Liu, Hsiang-Hsi & Chuang, Wen-I & Huang, Jih-Jeng & Chen, Yu-Hao, 2016. "The overconfident trading behavior of individual versus institutional investors," International Review of Economics & Finance, Elsevier, vol. 45(C), pages 518-539.
    2. Yang, Yung-Lieh & Chang, Chia-Lin, 2008. "A double-threshold GARCH model of stock market and currency shocks on stock returns," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(3), pages 458-474.
    3. Lahmiri, Salim, 2017. "Asymmetric and persistent responses in price volatility of fertilizers through stable and unstable periods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 405-414.
    4. Piotr Wdowinski & Marta Malecka, 2010. "Asymmetry in Volatility: A Comparison of Developed and Transition Stock Markets," CESifo Working Paper Series 2974, CESifo Group Munich.
    5. Wei, Yu, 2012. "Forecasting volatility of fuel oil futures in China: GARCH-type, SV or realized volatility models?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5546-5556.
    6. Kang, Sang Hoon & Cheong, Chongcheul & Yoon, Seong-Min, 2011. "Structural changes and volatility transmission in crude oil markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4317-4324.

  23. Gerlach, Richard & Chen, Cathy W.S. & Lin, Doris S.Y. & Huang, Ming-Hsiang, 2006. "Asymmetric responses of international stock markets to trading volume," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 360(2), pages 422-444.

    Cited by:

    1. Bartosz Gębka, 2012. "The Dynamic Relation Between Returns, Trading Volume, And Volatility: Lessons From Spillovers Between Asia And The United States," Bulletin of Economic Research, Wiley Blackwell, vol. 64(1), pages 65-90, 01.
    2. Chuang, Wen-I & Liu, Hsiang-Hsi & Susmel, Rauli, 2012. "The bivariate GARCH approach to investigating the relation between stock returns, trading volume, and return volatility," Global Finance Journal, Elsevier, vol. 23(1), pages 1-15.
    3. Neaime, Simon, 2016. "Financial crises and contagion vulnerability of MENA stock markets," Emerging Markets Review, Elsevier, vol. 27(C), pages 14-35.
    4. Ralf Brüggemann & Markus Glaser & Stefan Schaarschmidt & Sandra Stankiewicz, 2014. "The Stock Return - Trading Volume Relationship in European Countries: Evidence from Asymmetric Impulse Responses," Working Paper Series of the Department of Economics, University of Konstanz 2014-24, Department of Economics, University of Konstanz.
    5. Zolotoy, L., 2008. "Empirical essays on the information transfer between and the informational efficiency of stock markets," Other publications TiSEM 2a2652c6-1060-4622-8721-8, Tilburg University, School of Economics and Management.
    6. Vespignani, Joaquin L., 2012. "Modelling asymmetric consumer demand response: Evidence from scanner data," MPRA Paper 55601, University Library of Munich, Germany.
    7. Cheng, Xixin & Li, W.K. & Yu, Philip L.H. & Zhou, Xuan & Wang, Chao & Lo, P.H., 2011. "Modeling threshold conditional heteroscedasticity with regime-dependent skewness and kurtosis," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2590-2604, September.

  24. Chen, Cathy W.S. & So, Mike K.P., 2006. "On a threshold heteroscedastic model," International Journal of Forecasting, Elsevier, vol. 22(1), pages 73-89.

    Cited by:

    1. Chen, Cathy W.S. & Gerlach, Richard & Hwang, Bruce B.K. & McAleer, Michael, 2012. "Forecasting Value-at-Risk using nonlinear regression quantiles and the intra-day range," International Journal of Forecasting, Elsevier, vol. 28(3), pages 557-574.
    2. Michael Funke & Chang Shu & Xiaoqiang Cheng & Sercan Eraslan, 2015. "Assessing the CNH-CNY pricing differential: role of fundamentals, contagion and policy," BIS Working Papers 492, Bank for International Settlements.
    3. Liu, Hsiang-Hsi & Chuang, Wen-I & Huang, Jih-Jeng & Chen, Yu-Hao, 2016. "The overconfident trading behavior of individual versus institutional investors," International Review of Economics & Finance, Elsevier, vol. 45(C), pages 518-539.
    4. Yang, Yung-Lieh & Chang, Chia-Lin, 2008. "A double-threshold GARCH model of stock market and currency shocks on stock returns," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(3), pages 458-474.
    5. Chen, Cathy W.S. & Yang, Ming Jing & Gerlach, Richard & Jim Lo, H., 2006. "The asymmetric reactions of mean and volatility of stock returns to domestic and international information based on a four-regime double-threshold GARCH model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 366(C), pages 401-418.
    6. Yip, Iris W.H. & So, Mike K.P., 2009. "Simplified specifications of a multivariate generalized autoregressive conditional heteroscedasticity model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(2), pages 327-340.
    7. Chen, Cathy W.S. & Gerlach, Richard H. & Tai, Amanda P.J., 2008. "Testing for nonlinearity in mean and volatility for heteroskedastic models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(3), pages 489-499.
    8. Chen, Cathy W.S. & Gerlach, Richard & Lin, Edward M.H., 2014. "Bayesian estimation of smoothly mixing time-varying parameter GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 194-209.
    9. Lin, Edward M.H. & Chen, Cathy W.S. & Gerlach, Richard, 2012. "Forecasting volatility with asymmetric smooth transition dynamic range models," International Journal of Forecasting, Elsevier, vol. 28(2), pages 384-399.
    10. Gerlach, Richard & Tuyl, Frank, 2006. "MCMC methods for comparing stochastic volatility and GARCH models," International Journal of Forecasting, Elsevier, vol. 22(1), pages 91-107.
    11. Audrino, Francesco, 2014. "Forecasting correlations during the late-2000s financial crisis: The short-run component, the long-run component, and structural breaks," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 43-60.
    12. Chen, Cathy W.S. & Lee, Sangyeol, 2016. "Generalized Poisson autoregressive models for time series of counts," Computational Statistics & Data Analysis, Elsevier, vol. 99(C), pages 51-67.
    13. Chen, Cathy W.S. & Chan, Jennifer S.K. & So, Mike K.P. & Lee, Kevin K.M., 2011. "Classification in segmented regression problems," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2276-2287, July.
    14. Chen, Qian & Gerlach, Richard & Lu, Zudi, 2012. "Bayesian Value-at-Risk and expected shortfall forecasting via the asymmetric Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3498-3516.
    15. Chen, Cathy W.S. & Gerlach, Richard & Lin, Edward M.H., 2008. "Volatility forecasting using threshold heteroskedastic models of the intra-day range," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2990-3010, February.
    16. So, Mike K.P. & Chen, Cathy W.S. & Lee, Jen-Yu & Chang, Yi-Ping, 2008. "An empirical evaluation of fat-tailed distributions in modeling financial time series," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 77(1), pages 96-108.
    17. So, Mike K.P. & Chan, Raymond K.S., 2014. "Bayesian analysis of tail asymmetry based on a threshold extreme value model," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 568-587.
    18. So, Mike K.P. & Choi, C.Y., 2008. "A multivariate threshold stochastic volatility model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(3), pages 306-317.
    19. Vosseler, Alexander, 2016. "Bayesian model selection for unit root testing with multiple structural breaks," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 616-630.
    20. Beg, A.B.M. Rabiul Alam & Anwar, Sajid, 2012. "Sources of volatility persistence: A case study of the U.K. pound/U.S. dollar exchange rate returns," The North American Journal of Economics and Finance, Elsevier, vol. 23(2), pages 165-184.
    21. Chen, Cathy W. S. & Chiang, Thomas C. & So, Mike K. P., 2003. "Asymmetrical reaction to US stock-return news: evidence from major stock markets based on a double-threshold model," Journal of Economics and Business, Elsevier, vol. 55(5-6), pages 487-502.

  25. Mike K. P. So & Cathy W. S. Chen & Feng-Chi Liu, 2006. "Best subset selection of autoregressive models with exogenous variables and generalized autoregressive conditional heteroscedasticity errors," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 55(2), pages 201-224.

    Cited by:

    1. Søren Johansen & Marco Riani & Anthony C. Atkinson, 2012. "The Selection of ARIMA Models with or without Regressors," Discussion Papers 12-17, University of Copenhagen. Department of Economics.
    2. Yip, Iris W.H. & So, Mike K.P., 2009. "Simplified specifications of a multivariate generalized autoregressive conditional heteroscedasticity model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(2), pages 327-340.

  26. Chen, Cathy W.S. & Gerlach, Richard & So, Mike K.P., 2006. "Comparison of nonnested asymmetric heteroskedastic models," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2164-2178, December.

    Cited by:

    1. Mike K. P. So & C. Y. Choi, 2009. "A threshold factor multivariate stochastic volatility model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(8), pages 712-735.
    2. María José Rodríguez & Esther Ruiz, 2012. "Revisiting Several Popular GARCH Models with Leverage Effect: Differences and Similarities," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 10(4), pages 637-668, September.
    3. Amendola, Alessandra & Storti, Giuseppe, 2008. "A GMM procedure for combining volatility forecasts," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3047-3060, February.
    4. Perez-Alonso, Alicia, 2007. "A bootstrap approach to test the conditional symmetry in time series models," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3484-3504, April.
    5. Chen, Cathy W.S. & Gerlach, Richard & Lin, Edward M.H., 2008. "Volatility forecasting using threshold heteroskedastic models of the intra-day range," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2990-3010, February.
    6. Charles, Amélie, 2010. "The day-of-the-week effects on the volatility: The role of the asymmetry," European Journal of Operational Research, Elsevier, vol. 202(1), pages 143-152, April.
    7. Cathy Chen & Richard Gerlach, 2013. "Semi-parametric quantile estimation for double threshold autoregressive models with heteroskedasticity," Computational Statistics, Springer, vol. 28(3), pages 1103-1131, June.
    8. David Ardia & Lennart F. Hoogerheide, 2010. "Efficient Bayesian Estimation and Combination of GARCH-Type Models," Tinbergen Institute Discussion Papers 10-046/4, Tinbergen Institute.
    9. Chen, Cathy W.S. & Gerlach, Richard H. & Tai, Amanda P.J., 2008. "Testing for nonlinearity in mean and volatility for heteroskedastic models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(3), pages 489-499.
    10. Liu, Xiaochun & Luger, Richard, 2015. "Unfolded GARCH models," Journal of Economic Dynamics and Control, Elsevier, vol. 58(C), pages 186-217.
    11. Lin, Edward M.H. & Chen, Cathy W.S. & Gerlach, Richard, 2012. "Forecasting volatility with asymmetric smooth transition dynamic range models," International Journal of Forecasting, Elsevier, vol. 28(2), pages 384-399.
    12. Cathy Chen & Feng-Chi Liu & Mike So, 2013. "Threshold variable selection of asymmetric stochastic volatility models," Computational Statistics, Springer, vol. 28(6), pages 2415-2447, December.
    13. Gerlach, Richard & Abeywardana, Sachin, 2016. "Variational Bayes for assessment of dynamic quantile forecasts," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1385-1402.
    14. Cathy Chen & Simon Lin & Philip Yu, 2012. "Smooth Transition Quantile Capital Asset Pricing Models with Heteroscedasticity," Computational Economics, Springer;Society for Computational Economics, vol. 40(1), pages 19-48, June.

  27. Chen, Cathy W.S. & Yu, Tiffany H.K., 2005. "Long-term dependence with asymmetric conditional heteroscedasticity in stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 353(C), pages 413-424.

    Cited by:

    1. Raggi, Davide & Bordignon, Silvano, 2012. "Long memory and nonlinearities in realized volatility: A Markov switching approach," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3730-3742.

  28. Cathy W. S. Chen & Mike K. P. So & Ming-Tien Chen, 2005. "A Bayesian threshold nonlinearity test for financial time series," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 24(1), pages 61-75.

    Cited by:

    1. Chen, Cathy W.S. & Gerlach, Richard & Wei, D.C.M., 2009. "Bayesian causal effects in quantiles: Accounting for heteroscedasticity," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 1993-2007, April.
    2. Massimiliano Caporin & Loriana Pelizzon & Francesco Ravazzolo & Roberto Rigobon, 2013. "Measuring Sovereign Contagion in Europe," NBER Working Papers 18741, National Bureau of Economic Research, Inc.
    3. Chen, Cathy W. S. & Chiang, Thomas C. & So, Mike K. P., 2003. "Asymmetrical reaction to US stock-return news: evidence from major stock markets based on a double-threshold model," Journal of Economics and Business, Elsevier, vol. 55(5-6), pages 487-502.
    4. Chen, Cathy W.S. & Chan, Jennifer S.K. & So, Mike K.P. & Lee, Kevin K.M., 2011. "Classification in segmented regression problems," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2276-2287, July.
    5. So, Mike K.P. & Chen, Cathy W.S. & Lee, Jen-Yu & Chang, Yi-Ping, 2008. "An empirical evaluation of fat-tailed distributions in modeling financial time series," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 77(1), pages 96-108.
    6. Nonejad, Nima, 2014. "Particle Markov Chain Monte Carlo Techniques of Unobserved Component Time Series Models Using Ox," MPRA Paper 55662, University Library of Munich, Germany.
    7. Chen, Cathy W.S. & Gerlach, Richard H. & Tai, Amanda P.J., 2008. "Testing for nonlinearity in mean and volatility for heteroskedastic models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(3), pages 489-499.
    8. Chen, Cathy W.S. & Gerlach, Richard & So, Mike K.P., 2006. "Comparison of nonnested asymmetric heteroskedastic models," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2164-2178, December.
    9. Liu, Xiaochun & Luger, Richard, 2015. "Unfolded GARCH models," Journal of Economic Dynamics and Control, Elsevier, vol. 58(C), pages 186-217.
    10. Lai, YiHao & Chen, Cathy W.S. & Gerlach, Richard, 2009. "Optimal dynamic hedging via copula-threshold-GARCH models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(8), pages 2609-2624.
    11. Todd E. Clark & Francesco Ravazzolo, 2012. "The macroeconomic forecasting performance of autoregressive models with alternative specifications of time-varying volatility," Working Paper 2012/09, Norges Bank.
    12. Cathy Chen & Feng Liu & Richard Gerlach, 2011. "Bayesian subset selection for threshold autoregressive moving-average models," Computational Statistics, Springer, vol. 26(1), pages 1-30, March.
    13. Cathy Chen & Simon Lin & Philip Yu, 2012. "Smooth Transition Quantile Capital Asset Pricing Models with Heteroscedasticity," Computational Economics, Springer;Society for Computational Economics, vol. 40(1), pages 19-48, June.

  29. Chen, Cathy W. S. & Chiang, Thomas C. & So, Mike K. P., 2003. "Asymmetrical reaction to US stock-return news: evidence from major stock markets based on a double-threshold model," Journal of Economics and Business, Elsevier, vol. 55(5-6), pages 487-502.

    Cited by:

    1. Norbert Funke & Akimi Matsuda, 2006. "Macroeconomic News and Stock Returns in the United States and Germany," German Economic Review, Verein für Socialpolitik, vol. 7, pages 189-210, 05.
    2. Gerlach, Richard & Chen, Cathy W.S. & Lin, Doris S.Y. & Huang, Ming-Hsiang, 2006. "Asymmetric responses of international stock markets to trading volume," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 360(2), pages 422-444.
    3. Chen, Cathy W.S. & Gerlach, Richard & Hwang, Bruce B.K. & McAleer, Michael, 2012. "Forecasting Value-at-Risk using nonlinear regression quantiles and the intra-day range," International Journal of Forecasting, Elsevier, vol. 28(3), pages 557-574.
    4. Yang, Yung-Lieh & Chang, Chia-Lin, 2008. "A double-threshold GARCH model of stock market and currency shocks on stock returns," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(3), pages 458-474.
    5. Smales, Lee A., 2014. "Non-scheduled news arrival and high-frequency stock market dynamics," Research in International Business and Finance, Elsevier, vol. 32(C), pages 122-138.
    6. Chen, Cathy W.S. & Yang, Ming Jing & Gerlach, Richard & Jim Lo, H., 2006. "The asymmetric reactions of mean and volatility of stock returns to domestic and international information based on a four-regime double-threshold GARCH model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 366(C), pages 401-418.
    7. Marcelo Cunha Medeiros & Alvaro Veiga, 2004. "Modelling multiple regimes in financial volatility with a flexible coefficient GARCH model," Textos para discussão 486, Department of Economics PUC-Rio (Brazil).
    8. Liu, Hsiang-Hsi & Chuang, Wen-I & Huang, Jih-Jeng & Chen, Yu-Hao, 2016. "The overconfident trading behavior of individual versus institutional investors," International Review of Economics & Finance, Elsevier, vol. 45(C), pages 518-539.
    9. Chen, Cathy W.S. & Gerlach, Richard & So, Mike K.P., 2006. "Comparison of nonnested asymmetric heteroskedastic models," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2164-2178, December.
    10. Kushal Banik Chowdhury & Nityananda Sarkar, 2015. "The Effect of Inflation on Inflation Uncertainty in the G7 Countries: A Double Threshold GARCH Model," International Econometric Review (IER), Econometric Research Association, vol. 7(1), pages 34-50, April.
    11. Li, Huimin & Jeon, Bang Nam & Cho, Seong-Yeon & Chiang, Thomas C., 2008. "The impact of sovereign rating changes and financial contagion on stock market returns: Evidence from five Asian countries," Global Finance Journal, Elsevier, vol. 19(1), pages 46-55.
    12. Cheng, Xixin & Li, W.K. & Yu, Philip L.H. & Zhou, Xuan & Wang, Chao & Lo, P.H., 2011. "Modeling threshold conditional heteroscedasticity with regime-dependent skewness and kurtosis," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2590-2604, September.
    13. Chen, Cathy W.S. & Gerlach, Richard H. & Tai, Amanda P.J., 2008. "Testing for nonlinearity in mean and volatility for heteroskedastic models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(3), pages 489-499.
    14. Gebka, Bartosz & Serwa, Dobromil, 2006. "Are financial spillovers stable across regimes?: Evidence from the 1997 Asian crisis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 16(4), pages 301-317, October.
    15. Faten Ben Slimane & Mohamed Mehanaoui & Irfan Akbar Kazi, 2013. "How Does the Financial Crisis Affect Volatility Behavior and Transmission Among European Stock Markets?," International Journal of Financial Studies, MDPI, Open Access Journal, vol. 1(3), pages 81, August.
    16. Gao, Jiti & Gijbels, Irene & Van Bellegem, Sebastien, 2008. "Nonparametric simultaneous testing for structural breaks," Journal of Econometrics, Elsevier, vol. 143(1), pages 123-142, March.
    17. Cathy W. S. Chen & Mike K. P. So & Edward M. H. Lin, 2009. "Volatility forecasting with double Markov switching GARCH models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(8), pages 681-697.
    18. CHEN, Cathy W.S. & WENG, Monica M.C. & WATANABE, Toshiaki, 2015. "Employing Bayesian Forecasting of Value-at-Risk to Determine an Appropriate Model for Risk Management," Discussion paper series HIAS-E-16, Hitotsubashi Institute for Advanced Study, Hitotsubashi University.
    19. Klaus Grobys, 2015. "Size distortions of the wild bootstrapped HCCME-based LM test for serial correlation in the presence of asymmetric conditional heteroskedasticity," Empirical Economics, Springer, vol. 48(3), pages 1189-1202, May.
    20. Bialkowski, Jedrzej & Bohl, Martin T. & Serwa, Dobromil, 2006. "Testing for financial spillovers in calm and turbulent periods," The Quarterly Review of Economics and Finance, Elsevier, vol. 46(3), pages 397-412, July.
    21. Bartosz Gębka, 2012. "The Dynamic Relation Between Returns, Trading Volume, And Volatility: Lessons From Spillovers Between Asia And The United States," Bulletin of Economic Research, Wiley Blackwell, vol. 64(1), pages 65-90, 01.
    22. So, Mike K.P. & Chen, Cathy W.S. & Lee, Jen-Yu & Chang, Yi-Ping, 2008. "An empirical evaluation of fat-tailed distributions in modeling financial time series," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 77(1), pages 96-108.
    23. Yuan-Ming Lee & Kuan-Min Wang & T. Thanh-Binh Nguyen, 2008. "A Common-Use Proxy for Economic Performance: Application to Asymmetric Causality between the Stock Returns and Growth," International Journal of Business and Economics, College of Business, and College of Finance, Feng Chia University, Taichung, Taiwan, vol. 7(2), pages 101-124, August.
    24. Chen, Cathy W.S. & Gerlach, Richard & Lin, Edward M.H., 2008. "Volatility forecasting using threshold heteroskedastic models of the intra-day range," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2990-3010, February.
    25. Zhu, Hui-Ming & Li, ZhaoLai & You, WanHai & Zeng, Zhaofa, 2015. "Revisiting the asymmetric dynamic dependence of stock returns: Evidence from a quantile autoregression model," International Review of Financial Analysis, Elsevier, vol. 40(C), pages 142-153.
    26. Dendramis, Yiannis & Kapetanios, George & Tzavalis, Elias, 2015. "Shifts in volatility driven by large stock market shocks," Journal of Economic Dynamics and Control, Elsevier, vol. 55(C), pages 130-147.
    27. Gebka, Bartosz, 2006. "Leaders and Laggards: International Evidence on Spillovers in Returns, Variance, and Trading Volume," Working Paper Series 2006,1, European University Viadrina Frankfurt (Oder), The Postgraduate Research Programme Capital Markets and Finance in the Enlarged Europe.
    28. Faten Ben Slimane & Mohamed Mehanaoui & Irfan A. Kazi, 2014. "Interdependency and Spillover during the Financial Crisis of 2007 to 2009 – Evidence from High Frequency Intraday Data," Working Papers 2014-126, Department of Research, Ipag Business School.
    29. Chen, Cathy W.S. & Gerlach, Richard & Wei, D.C.M., 2009. "Bayesian causal effects in quantiles: Accounting for heteroscedasticity," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 1993-2007, April.
    30. Cathy Chen & Shu-Yu Chen & Sangyeol Lee, 2013. "Bayesian Unit Root Test in Double Threshold Heteroskedastic Models," Computational Economics, Springer;Society for Computational Economics, vol. 42(4), pages 471-490, December.
    31. Akhtar, Shumi & Faff, Robert & Oliver, Barry & Subrahmanyam, Avanidhar, 2011. "The power of bad: The negativity bias in Australian consumer sentiment announcements on stock returns," Journal of Banking & Finance, Elsevier, vol. 35(5), pages 1239-1249, May.
    32. Zhu, Junjun & Xie, Shiyu, 2010. "Bayesian Analysis of a Triple-Threshold GARCH Model with Application in Chinese Stock Market," MPRA Paper 28235, University Library of Munich, Germany.

  30. Cathy W. S. Chen & Mike K. P. So, 2003. "Subset threshold autoregression," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(1), pages 49-66.

    Cited by:

    1. Cathy Chen & Feng Liu & Richard Gerlach, 2011. "Bayesian subset selection for threshold autoregressive moving-average models," Computational Statistics, Springer, vol. 26(1), pages 1-30, March.
    2. Gilles Dufrenot & Dominique Guegan & Anne Peguin-Feissolle, 2008. "Changing-regime volatility: a fractionally integrated SETAR model," Applied Financial Economics, Taylor & Francis Journals, vol. 18(7), pages 519-526.
    3. Giannikis, D. & Vrontos, I.D. & Dellaportas, P., 2008. "Modelling nonlinearities and heavy tails via threshold normal mixture GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1549-1571, January.
    4. Philipp Piribauer, 2016. "Heterogeneity in spatial growth clusters," Empirical Economics, Springer, vol. 51(2), pages 659-680, September.
    5. Ferrara, Laurent & Guégan, Dominique, 2005. "Detection of the industrial business cycle using SETAR models," MPRA Paper 4389, University Library of Munich, Germany.
    6. Liu, Hsiang-Hsi & Chuang, Wen-I & Huang, Jih-Jeng & Chen, Yu-Hao, 2016. "The overconfident trading behavior of individual versus institutional investors," International Review of Economics & Finance, Elsevier, vol. 45(C), pages 518-539.
    7. Dufrenot, Gilles & Guegan, Dominique & Peguin-Feissolle, Anne, 2005. "Long-memory dynamics in a SETAR model - applications to stock markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 15(5), pages 391-406, December.
    8. Roberto Baragona & Francesco Battaglia & Domenico Cucina, 2004. "Estimating threshold subset autoregressive moving-average models by genetic algorithms," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(1), pages 39-61.
    9. Florian Huber, 2014. "Forecasting Exchange Rates using Bayesian Threshold Vector Autoregressions," Economics Bulletin, AccessEcon, vol. 34(3), pages 1687-1695.

  31. Chen, Cathy W. S. & Lee, Shen-Ming & Hsieh, Ying-Hen & Ungchusak, Kumnuan, 1999. "A unified approach to estimating population size for a births only model," Computational Statistics & Data Analysis, Elsevier, vol. 32(1), pages 29-46, November.

    Cited by:

    1. Hsieh, Ying-Hen & Chen, Cathy W.S. & Lee, Shen-Ming & Chen, Yi-Ming A. & Wu, Shiow-Ing & Lai, Shu-Fen & Chang, An-Lung, 2006. "Estimating the Number of HIV-infected gay sauna patrons in Taipei area," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 362(2), pages 495-503.

  32. Chen, Cathy W. S., 1998. "A Bayesian analysis of generalized threshold autoregressive models," Statistics & Probability Letters, Elsevier, vol. 40(1), pages 15-22, September.

    Cited by:

    1. Barnett, Alina & Mumtaz, Haroon & Theodoridis, Konstantinos, 2014. "Forecasting UK GDP growth and inflation under structural change. A comparison of models with time-varying parameters," International Journal of Forecasting, Elsevier, vol. 30(1), pages 129-143.
    2. Candelon Bertrand & Lieb Lenard, 2011. "Fiscal Policy in Good and Bad Times," Research Memorandum 001, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    3. Silvia Haan-Rietdijk & John M. Gottman & Cindy S. Bergeman & Ellen L. Hamaker, 2016. "Get Over It! A Multilevel Threshold Autoregressive Model for State-Dependent Affect Regulation," Psychometrika, Springer;The Psychometric Society, vol. 81(1), pages 217-241, March.
    4. Chen, Cathy W. S. & Chiang, Thomas C. & So, Mike K. P., 2003. "Asymmetrical reaction to US stock-return news: evidence from major stock markets based on a double-threshold model," Journal of Economics and Business, Elsevier, vol. 55(5-6), pages 487-502.
    5. Gerlach, Richard & Chen, Cathy W.S. & Lin, Doris S.Y. & Huang, Ming-Hsiang, 2006. "Asymmetric responses of international stock markets to trading volume," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 360(2), pages 422-444.
    6. Liu, Hsiang-Hsi & Chuang, Wen-I & Huang, Jih-Jeng & Chen, Yu-Hao, 2016. "The overconfident trading behavior of individual versus institutional investors," International Review of Economics & Finance, Elsevier, vol. 45(C), pages 518-539.
    7. Kushal Banik Chowdhury & Nityananda Sarkar, 2015. "The Effect of Inflation on Inflation Uncertainty in the G7 Countries: A Double Threshold GARCH Model," International Econometric Review (IER), Econometric Research Association, vol. 7(1), pages 34-50, April.
    8. Kling, Gerhard & Gao, Lei, 2008. "Chinese institutional investors' sentiment," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 18(4), pages 374-387, October.
    9. Philipp Piribauer, 2016. "Heterogeneity in spatial growth clusters," Empirical Economics, Springer, vol. 51(2), pages 659-680, September.
    10. Mohamed A. Ismail & Husni A. Charif, 2003. "Bayesian inference for threshold moving average models," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(1), pages 119-132.

  33. Chen, Cathy W. S., 1997. "Detection of additive outliers in bilinear time series," Computational Statistics & Data Analysis, Elsevier, vol. 24(3), pages 283-294, May.

    Cited by:

    1. Jussi Tolvi, 2001. "Outliers in eleven Finnish macroeconomic time series," Finnish Economic Papers, Finnish Economic Association, vol. 14(1), pages 14-32, Spring.
    2. King Chi Hung & Siu Hung Cheung & Wai-Sum Chan & Li-Xin Zhang, 2009. "On a robust test for SETAR-type nonlinearity in time series analysis," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(5), pages 445-464.
    3. Chen, Cathy W.S. & Lee, Sangyeol, 2016. "Generalized Poisson autoregressive models for time series of counts," Computational Statistics & Data Analysis, Elsevier, vol. 99(C), pages 51-67.
    4. Battaglia, Francesco, 2005. "Outliers in functional autoregressive time series," Statistics & Probability Letters, Elsevier, vol. 72(4), pages 323-332, May.

For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, Cathy W. S. Chen should log into the RePEc Author Service

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.