IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v31y2022i1d10.1007_s10260-021-00561-x.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this article

Dependence on a collection of Poisson random variables

Author

Listed:
  • Luis E. Nieto-Barajas

    (ITAM)

Abstract

We propose two novel ways of introducing dependence among Poisson counts through the use of latent variables in a three levels hierarchical model. Marginal distributions of the random variables of interest are Poisson with strict stationarity as special case. Order–p dependence is described in detail for a temporal sequence of random variables. A full Bayesian inference of the models is described and performance of the models is illustrated with a numerical analysis of maternal mortality in Mexico. Extensions to seasonal, periodic, spatial or spatio-temporal dependencies, as well as coping with overdispersion, are also discussed.

Suggested Citation

  • Luis E. Nieto-Barajas, 2022. "Dependence on a collection of Poisson random variables," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(1), pages 21-39, March.
  • Handle: RePEc:spr:stmapp:v:31:y:2022:i:1:d:10.1007_s10260-021-00561-x
    DOI: 10.1007/s10260-021-00561-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10260-021-00561-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10260-021-00561-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fokianos, Konstantinos & Rahbek, Anders & Tjøstheim, Dag, 2009. "Poisson Autoregression," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1430-1439.
    2. Chen, Cathy W.S. & Lee, Sangyeol, 2016. "Generalized Poisson autoregressive models for time series of counts," Computational Statistics & Data Analysis, Elsevier, vol. 99(C), pages 51-67.
    3. Nabeya, Seiji, 2001. "Unit Root Seasonal Autoregressive Models With A Polynomial Trend Of Higher Degree," Econometric Theory, Cambridge University Press, vol. 17(2), pages 357-385, April.
    4. A. I. McLeod, 1994. "Diagnostic Checking Of Periodic Autoregression Models With Application," Journal of Time Series Analysis, Wiley Blackwell, vol. 15(2), pages 221-233, March.
    5. René Ferland & Alain Latour & Driss Oraichi, 2006. "Integer‐Valued GARCH Process," Journal of Time Series Analysis, Wiley Blackwell, vol. 27(6), pages 923-942, November.
    6. Konstantinos Fokianos & Benjamin Kedem, 2004. "Partial Likelihood Inference For Time Series Following Generalized Linear Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(2), pages 173-197, March.
    7. Cathy W. S. Chen & Sangyeol Lee, 2017. "Bayesian causality test for integer-valued time series models with applications to climate and crime data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(4), pages 797-814, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinyang Wang & Dehui Wang & Kai Yang, 2021. "Integer-valued time series model order shrinkage and selection via penalized quasi-likelihood approach," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(5), pages 713-750, July.
    2. Chen, Cathy W.S. & Chen, Chun-Shu & Hsiung, Mo-Hua, 2023. "Bayesian modeling of spatial integer-valued time series," Computational Statistics & Data Analysis, Elsevier, vol. 188(C).
    3. Cem Cakmakli & Yasin Simsek, 2020. "Bridging the COVID-19 Data and the Epidemiological Model using Time Varying Parameter SIRD Model," Papers 2007.02726, arXiv.org, revised Feb 2021.
    4. Youngmi Lee & Sangyeol Lee, 2019. "CUSUM test for general nonlinear integer-valued GARCH models: comparison study," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(5), pages 1033-1057, October.
    5. Konstantinos Fokianos & Roland Fried, 2010. "Interventions in INGARCH processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(3), pages 210-225, May.
    6. Kai Yang & Han Li & Dehui Wang & Chenhui Zhang, 2021. "Random coefficients integer-valued threshold autoregressive processes driven by logistic regression," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(4), pages 533-557, December.
    7. Cem Cakmakli & Yasin Simsek, 2023. "Bridging the Covid-19 Data and the Epidemiological Model using Time-Varying Parameter SIRD Model," Papers 2301.13692, arXiv.org.
    8. Cathy W. S. Chen & Sangyeol Lee & K. Khamthong, 2021. "Bayesian inference of nonlinear hysteretic integer-valued GARCH models for disease counts," Computational Statistics, Springer, vol. 36(1), pages 261-281, March.
    9. Fokianos, Konstantinos & Tjøstheim, Dag, 2011. "Log-linear Poisson autoregression," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 563-578, March.
    10. Qi Li & Fukang Zhu, 2020. "Mean targeting estimator for the integer-valued GARCH(1, 1) model," Statistical Papers, Springer, vol. 61(2), pages 659-679, April.
    11. Cathy W. S. Chen & Sangyeol Lee, 2017. "Bayesian causality test for integer-valued time series models with applications to climate and crime data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(4), pages 797-814, August.
    12. Huiyu Mao & Fukang Zhu & Yan Cui, 2020. "A generalized mixture integer-valued GARCH model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(3), pages 527-552, September.
    13. Aknouche, Abdelhakim & Dimitrakopoulos, Stefanos, 2020. "On an integer-valued stochastic intensity model for time series of counts," MPRA Paper 105406, University Library of Munich, Germany.
    14. Hanan Elsaied & Roland Fried, 2014. "Robust Fitting Of Inarch Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(6), pages 517-535, November.
    15. William Kengne & Isidore S. Ngongo, 2022. "Inference for nonstationary time series of counts with application to change-point problems," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(4), pages 801-835, August.
    16. Christian H. Weiß & Esmeralda Gonçalves & Nazaré Mendes Lopes, 2017. "Testing the compounding structure of the CP-INARCH model," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(5), pages 571-603, July.
    17. Ali Ahmad & Christian Francq, 2016. "Poisson QMLE of Count Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(3), pages 291-314, May.
    18. Christian H. Weiß & Sebastian Schweer, 2015. "Detecting overdispersion in INARCH(1) processes," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 69(3), pages 281-297, August.
    19. Weiß, Gregor N.F. & Supper, Hendrik, 2013. "Forecasting liquidity-adjusted intraday Value-at-Risk with vine copulas," Journal of Banking & Finance, Elsevier, vol. 37(9), pages 3334-3350.
    20. Robert Jung & A. Tremayne, 2011. "Useful models for time series of counts or simply wrong ones?," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(1), pages 59-91, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:31:y:2022:i:1:d:10.1007_s10260-021-00561-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.