IDEAS home Printed from https://ideas.repec.org/a/jof/jforec/v28y2009i5p445-464.html
   My bibliography  Save this article

On a robust test for SETAR-type nonlinearity in time series analysis

Author

Listed:
  • King Chi Hung

    (Chinese University of Hong Kong, Hong Kong)

  • Siu Hung Cheung
  • Wai-Sum Chan

    (Chinese University of Hong Kong, Hong Kong)

  • Li-Xin Zhang

    (Zhejiang University, PR China)

Abstract

There has been growing interest in exploiting potential forecast gains from the nonlinear structure of self-exciting threshold autoregressive (SETAR) models. Statistical tests have been proposed in the literature to help analysts check for the presence of SETAR-type nonlinearities in observed time series. However, previous studies show that classical nonlinearity tests are not robust to additive outliers. In practice, time series outliers are not uncommonly encountered. It is important to develop a more robust test for SETAR-type nonlinearity in time series analysis and forecasting. In this paper we propose a new robust nonlinearity test and the asymptotic null distribution of the test statistic is derived. A Monte Carlo experiment is carried out to compare the power of the proposed test with other existing tests under the influence of time series outliers. The effects of additive outliers on nonlinearity tests with misspecification of the autoregressive order are also studied. The results indicate that the proposed method is preferable to the classical tests when the observations are contaminated with outliers. Finally, we provide illustrative examples by applying the statistical tests to three real datasets. Copyright © 2009 John Wiley & Sons, Ltd.

Suggested Citation

  • King Chi Hung & Siu Hung Cheung & Wai-Sum Chan & Li-Xin Zhang, 2009. "On a robust test for SETAR-type nonlinearity in time series analysis," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(5), pages 445-464.
  • Handle: RePEc:jof:jforec:v:28:y:2009:i:5:p:445-464
    DOI: 10.1002/for.1122
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1002/for.1122
    File Function: Link to full text; subscription required
    Download Restriction: no

    References listed on IDEAS

    as
    1. Chen, Cathy W. S., 1997. "Detection of additive outliers in bilinear time series," Computational Statistics & Data Analysis, Elsevier, vol. 24(3), pages 283-294, May.
    2. Hansen, Bruce E, 1996. "Inference When a Nuisance Parameter Is Not Identified under the Null Hypothesis," Econometrica, Econometric Society, vol. 64(2), pages 413-430, March.
    3. De Gooijer, Jan G. & Kumar, Kuldeep, 1992. "Some recent developments in non-linear time series modelling, testing, and forecasting," International Journal of Forecasting, Elsevier, vol. 8(2), pages 135-156, October.
    4. Man-Wai Ng & Wai-Sum Chan, 2004. "Robustness of alternative non-linearity tests for SETAR models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(3), pages 215-231.
    5. Van Dijk, Dick & Franses, Philip Hans & Lucas, Andre, 1999. "Testing for Smooth Transition Nonlinearity in the Presence of Outliers," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(2), pages 217-235, April.
    6. Sarantis, Nicholas, 2001. "Nonlinearities, cyclical behaviour and predictability in stock markets: international evidence," International Journal of Forecasting, Elsevier, vol. 17(3), pages 459-482.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yoon, Gawon, 2009. "It's all the miners' fault: On the nonlinearity in U.S. unemployment rates," Economic Modelling, Elsevier, vol. 26(6), pages 1449-1454, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jof:jforec:v:28:y:2009:i:5:p:445-464. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.