IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v25y2009i2p418-428.html
   My bibliography  Save this article

Testing for threshold effect in ARFIMA models: Application to US unemployment rate data

Author

Listed:
  • Lahiani, A.
  • Scaillet, O.

Abstract

Macroeconomic time series often involve a threshold effect in their ARMA representation, and exhibit long memory features. In this paper we introduce a new class of threshold ARFIMA models to account for this. The threshold effect is introduced in the autoregressive and/or fractional integration parameters, and can be tested for using LM tests. Monte Carlo experiments show the desirable finite sample size and the power of the test with an exact maximum likelihood estimator of the long memory parameter. Simulations also show that a model selection strategy is available to discriminate between the competing threshold ARFIMA models. The methodology is applied to US unemployment rate data, where we find a significant threshold effect in the ARFIMA representation, and a better forecasting performance relative to TAR and symmetric ARFIMA models.

Suggested Citation

  • Lahiani, A. & Scaillet, O., 2009. "Testing for threshold effect in ARFIMA models: Application to US unemployment rate data," International Journal of Forecasting, Elsevier, vol. 25(2), pages 418-428.
  • Handle: RePEc:eee:intfor:v:25:y:2009:i:2:p:418-428
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169-2070(09)00012-0
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Sowell, Fallaw, 1992. "Maximum likelihood estimation of stationary univariate fractionally integrated time series models," Journal of Econometrics, Elsevier, pages 165-188.
    2. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, November.
    3. Hansen, Bruce E, 1996. "Inference When a Nuisance Parameter Is Not Identified under the Null Hypothesis," Econometrica, Econometric Society, vol. 64(2), pages 413-430, March.
    4. Andersson, Michael K. & Eklund, Bruno & Lyhagen, Johan, 1999. "A simple linear time series model with misleading nonlinear properties," Economics Letters, Elsevier, vol. 65(3), pages 281-284, December.
    5. Bhardwaj, Geetesh & Swanson, Norman R., 2006. "An empirical investigation of the usefulness of ARFIMA models for predicting macroeconomic and financial time series," Journal of Econometrics, Elsevier, pages 539-578.
    6. Hansen, Bruce E., 2000. "Testing for structural change in conditional models," Journal of Econometrics, Elsevier, pages 93-115.
    7. Anas, Jacques & Ferrara, Laurent, 2002. "Un indicateur d'entrée et sortie de récession: application aux Etats-Unis
      [A start-end recession index: Application for United-States]
      ," MPRA Paper 4043, University Library of Munich, Germany.
    8. Andrews, Donald W K & Ploberger, Werner, 1994. "Optimal Tests When a Nuisance Parameter Is Present Only under the Alternative," Econometrica, Econometric Society, pages 1383-1414.
    9. Benoit Bellone & David Saint-Martin, 2004. "Detecting Turning Points with Many Predictors through Hidden Markov Models," Econometrics 0407001, EconWPA.
    10. van Dijk, Dick & Franses, Philip Hans & Paap, Richard, 2002. "A nonlinear long memory model, with an application to US unemployment," Journal of Econometrics, Elsevier, pages 135-165.
    11. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    12. Francis X. Diebold & Atsushi Inoue, 2000. "Long Memory and Regime Switching," NBER Technical Working Papers 0264, National Bureau of Economic Research, Inc.
    13. Lo, Andrew W, 1991. "Long-Term Memory in Stock Market Prices," Econometrica, Econometric Society, vol. 59(5), pages 1279-1313, September.
    14. Hidalgo, Javier & Robinson, Peter M., 1996. "Testing for structural change in a long-memory environment," Journal of Econometrics, Elsevier, pages 159-174.
    15. McCracken, Michael W., 2007. "Asymptotics for out of sample tests of Granger causality," Journal of Econometrics, Elsevier, pages 719-752.
    16. Diebold, Francis X. & Inoue, Atsushi, 2001. "Long memory and regime switching," Journal of Econometrics, Elsevier, pages 131-159.
    17. Guay, Alain & Scaillet, Olivier, 2003. "Indirect Inference, Nuisance Parameter, and Threshold Moving Average Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(1), pages 122-132, January.
    18. Bhardwaj, Geetesh & Swanson, Norman R., 2006. "An empirical investigation of the usefulness of ARFIMA models for predicting macroeconomic and financial time series," Journal of Econometrics, Elsevier, pages 539-578.
    19. Philip Rothman, "undated". "Forecasting Asymmetric Unemployment Rates," Working Papers 9618, East Carolina University, Department of Economics.
    20. Philip Rothman, 1998. "Forecasting Asymmetric Unemployment Rates," The Review of Economics and Statistics, MIT Press, pages 164-168.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aloy Marcel & Tong Charles Lai & Peguin-Feissolle Anne & Dufrénot Gilles, 2013. "A smooth transition long-memory model," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, pages 281-296.
    2. Arouri, Mohamed El Hedi & Hammoudeh, Shawkat & Lahiani, Amine & Nguyen, Duc Khuong, 2012. "Long memory and structural breaks in modeling the return and volatility dynamics of precious metals," The Quarterly Review of Economics and Finance, Elsevier, vol. 52(2), pages 207-218.

    More about this item

    Keywords

    Threshold ARFIMA LM test Asymmetric time series;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:25:y:2009:i:2:p:418-428. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.