IDEAS home Printed from https://ideas.repec.org/a/taf/applec/v47y2015i32p3482-3498.html
   My bibliography  Save this article

Optimal gasoline hedging strategies using futures contracts and exchange-traded funds

Author

Listed:
  • Kunlapath Sukcharoen
  • Hankyeung Choi
  • David J. Leatham

Abstract

This article employs a variety of econometric models (including OLS, VEC/VAR, DCC GARCH and a class of copula-based GARCH models) to estimate optimal hedge ratios for gasoline spot prices using gasoline exchange-traded funds (ETFs) and gasoline futures contracts. We then compare their performance using four different measures from the perspective of both their hedging objectives and trading position using four different measures: variance reduction measure, utility-based measure and two tail-based measures (value at risk and expected shortfall). The impact of the 2008 financial market crisis on hedging performance is also investigated. Our findings indicate that, in terms of variance reduction, the static models (OLS and VEC/VAR) are found to be the best hedging strategies. However, more sophisticated time-varying hedging strategies could outperform the static hedging models when the other measures are used. In addition, ETF hedging is a more effective hedging strategy than futures hedging during the high-volatility (crisis) period, but this is not always the case during the normal time (post-crisis) period.

Suggested Citation

  • Kunlapath Sukcharoen & Hankyeung Choi & David J. Leatham, 2015. "Optimal gasoline hedging strategies using futures contracts and exchange-traded funds," Applied Economics, Taylor & Francis Journals, vol. 47(32), pages 3482-3498, July.
  • Handle: RePEc:taf:applec:v:47:y:2015:i:32:p:3482-3498
    DOI: 10.1080/00036846.2015.1016210
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00036846.2015.1016210
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00036846.2015.1016210?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chang, C-L. & McAleer, M.J. & Tansuchat, R., 2010. "Analyzing and Forecasting Volatility Spillovers and Asymmetries in Major Crude Oil Spot, Forward and Futures Markets," Econometric Institute Research Papers EI 2010-14, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    2. Choudhry, Taufiq, 2003. "Short-run deviations and optimal hedge ratio: evidence from stock futures," Journal of Multinational Financial Management, Elsevier, vol. 13(2), pages 171-192, April.
    3. Chang, Chia-Lin & McAleer, Michael & Tansuchat, Roengchai, 2010. "Analyzing and forecasting volatility spillovers, asymmetries and hedging in major oil markets," Energy Economics, Elsevier, vol. 32(6), pages 1445-1455, November.
    4. Lai, YiHao & Chen, Cathy W.S. & Gerlach, Richard, 2009. "Optimal dynamic hedging via copula-threshold-GARCH models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(8), pages 2609-2624.
    5. Zivot, Eric & Andrews, Donald W K, 2002. "Further Evidence on the Great Crash, the Oil-Price Shock, and the Unit-Root Hypothesis," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 25-44, January.
    6. John Cotter & Jim Hanly, 2006. "Reevaluating hedging performance," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 26(7), pages 677-702, July.
    7. Ederington, Louis H, 1979. "The Hedging Performance of the New Futures Markets," Journal of Finance, American Finance Association, vol. 34(1), pages 157-170, March.
    8. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    9. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    10. Sung Yong Park & Sang Young Jei, 2010. "Estimation and hedging effectiveness of time‐varying hedge ratio: Flexible bivariate garch approaches," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 30(1), pages 71-99, January.
    11. Amir Alizadeh & Manolis Kavussanos & David Menachof, 2004. "Hedging against bunker price fluctuations using petroleum futures contracts: constant versus time-varying hedge ratios," Applied Economics, Taylor & Francis Journals, vol. 36(12), pages 1337-1353.
    12. Alexander, Carol & Prokopczuk, Marcel & Sumawong, Anannit, 2013. "The (de)merits of minimum-variance hedging: Application to the crack spread," Energy Economics, Elsevier, vol. 36(C), pages 698-707.
    13. Chih‐Chiang Hsu & Chih‐Ping Tseng & Yaw‐Huei Wang, 2008. "Dynamic hedging with futures: A copula‐based GARCH model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 28(11), pages 1095-1116, November.
    14. Kroner, Kenneth F. & Sultan, Jahangir, 1993. "Time-Varying Distributions and Dynamic Hedging with Foreign Currency Futures," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 28(4), pages 535-551, December.
    15. Chen, Sheng-Syan & Lee, Cheng-few & Shrestha, Keshab, 2003. "Futures hedge ratios: a review," The Quarterly Review of Economics and Finance, Elsevier, vol. 43(3), pages 433-465.
    16. Wing H. Chan & Denise Young, 2006. "Jumping hedges: An examination of movements in copper spot and futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 26(2), pages 169-188, February.
    17. Bruce A. Benet, 1992. "Hedge period length and Ex‐ante futures hedging effectiveness: The case of foreign‐exchange risk cross hedges," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 12(2), pages 163-175, April.
    18. Hansen, Bruce E, 1994. "Autoregressive Conditional Density Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(3), pages 705-730, August.
    19. Alizadeh, Amir H. & Nomikos, Nikos K. & Pouliasis, Panos K., 2008. "A Markov regime switching approach for hedging energy commodities," Journal of Banking & Finance, Elsevier, vol. 32(9), pages 1970-1983, September.
    20. Hsiang‐Tai Lee, 2009. "A copula‐based regime‐switching GARCH model for optimal futures hedging," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 29(10), pages 946-972, October.
    21. Figlewski, Stephen, 1984. "Hedging Performance and Basis Risk in Stock Index Futures," Journal of Finance, American Finance Association, vol. 39(3), pages 657-669, July.
    22. Lee, Hsiang-Tai, 2010. "Regime switching correlation hedging," Journal of Banking & Finance, Elsevier, vol. 34(11), pages 2728-2741, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bai, Xiwen & Kavussanos, Manolis G., 2022. "Hedging IMO2020 compliant fuel price exposure using futures contracts," Energy Economics, Elsevier, vol. 110(C).
    2. Enrique Molina‐Muñoz & Andrés Mora‐Valencia & Javier Perote, 2021. "Backtesting expected shortfall for world stock index ETFs with extreme value theory and Gram–Charlier mixtures," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 4163-4189, July.
    3. Arunanondchai, Panit & Sukcharoen, Kunlapath & Leatham, David J., 2020. "Dealing with tail risk in energy commodity markets: Futures contracts versus exchange-traded funds," Journal of Commodity Markets, Elsevier, vol. 20(C).
    4. Pablo Urtubia & Alfonso Novales & Andrés Mora-Valencia, 2021. "Cross-Hedging Portfolios in Emerging Stock Markets: Evidence for the LATIBEX Index," Mathematics, MDPI, vol. 9(21), pages 1-19, October.
    5. Sukcharoen, Kunlapath & Leatham, David J., 2017. "Hedging downside risk of oil refineries: A vine copula approach," Energy Economics, Elsevier, vol. 66(C), pages 493-507.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yudong Wang & Chongfeng Wu & Li Yang, 2015. "Hedging with Futures: Does Anything Beat the Naïve Hedging Strategy?," Management Science, INFORMS, vol. 61(12), pages 2870-2889, December.
    2. Wang, Yudong & Geng, Qianjie & Meng, Fanyi, 2019. "Futures hedging in crude oil markets: A comparison between minimum-variance and minimum-risk frameworks," Energy, Elsevier, vol. 181(C), pages 815-826.
    3. Cao, Min & Conlon, Thomas, 2023. "Composite jet fuel cross-hedging," Journal of Commodity Markets, Elsevier, vol. 30(C).
    4. Ubukata, Masato, 2018. "Dynamic hedging performance and downside risk: Evidence from Nikkei index futures," International Review of Economics & Finance, Elsevier, vol. 58(C), pages 270-281.
    5. Bai, Xiwen & Kavussanos, Manolis G., 2022. "Hedging IMO2020 compliant fuel price exposure using futures contracts," Energy Economics, Elsevier, vol. 110(C).
    6. Zhiyuan Pan & Xianchao Sun, 2014. "Hedging Strategy Using Copula and Nonparametric Methods: Evidence from China Securities Index Futures," International Journal of Economics and Financial Issues, Econjournals, vol. 4(1), pages 107-121.
    7. Olson, Eric & Vivian, Andrew & Wohar, Mark E., 2019. "What is a better cross-hedge for energy: Equities or other commodities?," Global Finance Journal, Elsevier, vol. 42(C).
    8. Qianjie Geng & Yudong Wang, 2021. "Futures Hedging in CSI 300 Markets: A Comparison Between Minimum-Variance and Maximum-Utility Frameworks," Computational Economics, Springer;Society for Computational Economics, vol. 57(2), pages 719-742, February.
    9. Lin, Xiaoqiang & Chen, Qiang & Tang, Zhenpeng, 2014. "Dynamic hedging strategy in incomplete market: Evidence from Shanghai fuel oil futures market," Economic Modelling, Elsevier, vol. 40(C), pages 81-90.
    10. Chang, Chia-Lin & McAleer, Michael & Tansuchat, Roengchai, 2011. "Crude oil hedging strategies using dynamic multivariate GARCH," Energy Economics, Elsevier, vol. 33(5), pages 912-923, September.
    11. Wei, Yu & Wang, Yudong & Huang, Dengshi, 2011. "A copula–multifractal volatility hedging model for CSI 300 index futures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4260-4272.
    12. Chun, Dohyun & Cho, Hoon & Kim, Jihun, 2019. "Crude oil price shocks and hedging performance: A comparison of volatility models," Energy Economics, Elsevier, vol. 81(C), pages 1132-1147.
    13. Sukcharoen, Kunlapath & Leatham, David J., 2017. "Hedging downside risk of oil refineries: A vine copula approach," Energy Economics, Elsevier, vol. 66(C), pages 493-507.
    14. Pan, Zhiyuan & Wang, Yudong & Yang, Li, 2014. "Hedging crude oil using refined product: A regime switching asymmetric DCC approach," Energy Economics, Elsevier, vol. 46(C), pages 472-484.
    15. Kotkatvuori-Örnberg, Juha, 2016. "Dynamic conditional copula correlation and optimal hedge ratios with currency futures," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 60-69.
    16. Yu-Sheng Lai, 2018. "Dynamic hedging with futures: a copula-based GARCH model with high-frequency data," Review of Derivatives Research, Springer, vol. 21(3), pages 307-329, October.
    17. Martínez, Beatriz & Torró, Hipòlit, 2015. "European natural gas seasonal effects on futures hedging," Energy Economics, Elsevier, vol. 50(C), pages 154-168.
    18. Spencer, Simon & Bredin, Don & Conlon, Thomas, 2018. "Energy and agricultural commodities revealed through hedging characteristics: Evidence from developing and mature markets," Journal of Commodity Markets, Elsevier, vol. 9(C), pages 1-20.
    19. Hung, Jui-Cheng, 2015. "Evaluation of realized multi-power variations in minimum variance hedging," Economic Modelling, Elsevier, vol. 51(C), pages 672-679.
    20. Chevallier, Julien & Ielpo, Florian, 2017. "Investigating the leverage effect in commodity markets with a recursive estimation approach," Research in International Business and Finance, Elsevier, vol. 39(PB), pages 763-778.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:applec:v:47:y:2015:i:32:p:3482-3498. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAEC20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.