IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v348y2025i1d10.1007_s10479-023-05746-z.html
   My bibliography  Save this article

Volatility forecasting: a new GARCH-type model for fuzzy sets-valued time series

Author

Listed:
  • Xingyu Dai

    (Nanjing University of Aeronautics and Astronautics
    Nanjing University of Aeronautics and Astronautics)

  • Roy Cerqueti

    (Sapienza University of Rome
    University of Angers, SFR CONFLUENCES)

  • Qunwei Wang

    (Nanjing University of Aeronautics and Astronautics
    Nanjing University of Aeronautics and Astronautics)

  • Ling Xiao

    (Royal Holloway University of London)

Abstract

In recent years, academia’s attention has gradually shifted toward non-point-valued time series volatility forecasting models in the finance big data environment. This paper uses random set theory to define the random fuzzy sets-valued assets returns and propose a new Generalized Autoregressive Conditional Heteroskedasticity (GARCH)-type model named the Set-GARCH model, which describes the evolution of sets-valued returns time series volatility. We conceptualize such a model in both cases of correlated and uncorrelated returns. We discuss the subtraction operation rule, the model specification, and the maximum likelihood estimation method for the Set-GARCH model and its derivative model. We also define how to convert the volatility of fuzzy sets-valued returns to the volatility of real returns. Using long timespan daily/weekly/monthly oil, S &P500, and gold returns data, both in-sample and out-of-sample empirical applications demonstrate that the volatility prediction ability of the Set-GARCH model and its derivative outperforms the point-valued GARCH-type models, conditional autoregressive range-type models, and two hotly debated interval-valued volatility models.

Suggested Citation

  • Xingyu Dai & Roy Cerqueti & Qunwei Wang & Ling Xiao, 2025. "Volatility forecasting: a new GARCH-type model for fuzzy sets-valued time series," Annals of Operations Research, Springer, vol. 348(1), pages 735-775, May.
  • Handle: RePEc:spr:annopr:v:348:y:2025:i:1:d:10.1007_s10479-023-05746-z
    DOI: 10.1007/s10479-023-05746-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-023-05746-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-023-05746-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:348:y:2025:i:1:d:10.1007_s10479-023-05746-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.