IDEAS home Printed from https://ideas.repec.org/a/gam/jstats/v5y2022i1p13-202d752373.html
   My bibliography  Save this article

Bootstrap Prediction Intervals of Temporal Disaggregation

Author

Listed:
  • Bu Hyoung Lee

    (Department of Mathematics and Statistics, Loyola University Maryland, 4501 N. Charles Street, Baltimore, MD 21210, USA)

Abstract

In this article, we propose an interval estimation method to trace an unknown disaggregate series within certain bandwidths. First, we consider two model-based disaggregation methods called the GLS disaggregation and the ARIMA disaggregation. Then, we develop iterative steps to construct AR-sieve bootstrap prediction intervals for model-based temporal disaggregation. As an illustration, we analyze the quarterly total balances of U.S. international trade in goods and services between the first quarter of 1992 and the fourth quarter of 2020.

Suggested Citation

  • Bu Hyoung Lee, 2022. "Bootstrap Prediction Intervals of Temporal Disaggregation," Stats, MDPI, vol. 5(1), pages 1-13, February.
  • Handle: RePEc:gam:jstats:v:5:y:2022:i:1:p:13-202:d:752373
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-905X/5/1/13/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-905X/5/1/13/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Luiz K. Hotta & Klaus L. Vasconcellos, 1999. "Aggregation and Disaggregation of Structural Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 20(2), pages 155-171, March.
    2. Daniel O. Stram & William W. S. Wei, 1986. "Temporal Aggregation In The Arima Process," Journal of Time Series Analysis, Wiley Blackwell, vol. 7(4), pages 279-292, July.
    3. Alonso, Andrés M. & Peña, Daniel & Romo, Juan, 2003. "On sieve bootstrap prediction intervals," Statistics & Probability Letters, Elsevier, vol. 65(1), pages 13-20, October.
    4. Litterman, Robert B, 1983. "A Random Walk, Markov Model for the Distribution of Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 1(2), pages 169-173, April.
    5. Chow, Gregory C & Lin, An-loh, 1971. "Best Linear Unbiased Interpolation, Distribution, and Extrapolation of Time Series by Related Series," The Review of Economics and Statistics, MIT Press, vol. 53(4), pages 372-375, November.
    6. Chen, Cathy W.S. & Lee, Sangyeol, 2016. "Generalized Poisson autoregressive models for time series of counts," Computational Statistics & Data Analysis, Elsevier, vol. 99(C), pages 51-67.
    7. Fernandez, Roque B, 1981. "A Methodological Note on the Estimation of Time Series," The Review of Economics and Statistics, MIT Press, vol. 63(3), pages 471-476, August.
    8. Alonso, Andres M. & Sipols, Ana E., 2008. "A time series bootstrap procedure for interpolation intervals," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 1792-1805, January.
    9. R. K. Freeland & B. P. M. McCabe, 2004. "Analysis of low count time series data by poisson autoregression," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(5), pages 701-722, September.
    10. Sax, Christoph & Steiner, Peter, 2013. "Temporal Disaggregation of Time Series," MPRA Paper 53389, University Library of Munich, Germany.
    11. Daniel O. Stram & William W. S. Wei, 1986. "A Methodological Note On The Disaggregation Of Time Series Totals," Journal of Time Series Analysis, Wiley Blackwell, vol. 7(4), pages 293-302, July.
    12. Bu Hyoung Lee & William W. S. Wei, 2017. "The use of temporally aggregated data on detecting a mean change of a time series process," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(12), pages 5851-5871, June.
    13. Filippo Moauro & Giovanni Savio, 2005. "Temporal disaggregation using multivariate structural time series models," Econometrics Journal, Royal Economic Society, vol. 8(2), pages 214-234, July.
    14. Feijoo, Santiago Rodriguez & Caro, Alejandro Rodriguez & Quintana, Delia Davila, 2003. "Methods for quarterly disaggregation without indicators; a comparative study using simulation," Computational Statistics & Data Analysis, Elsevier, vol. 43(1), pages 63-78, May.
    15. Fukang Zhu & Dehui Wang, 2011. "Estimation and testing for a Poisson autoregressive model," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 73(2), pages 211-230, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Yu-Lieh, 2012. "Measuring business cycles: A temporal disaggregation model with regime switching," Economic Modelling, Elsevier, vol. 29(2), pages 283-290.
    2. Klaus Abberger & Michael Graff & Oliver Müller & Boriss Siliverstovs, 2023. "Imputing Monthly Values for Quarterly Time Series: An Application Performed with Swiss Business Cycle Data," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 19(3), pages 241-273, November.
    3. Enrique M. Quilis, 2018. "Temporal disaggregation of economic time series: The view from the trenches," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 72(4), pages 447-470, November.
    4. Vosen, Simeon & Schmidt, Torsten, 2012. "A monthly consumption indicator for Germany based on Internet search query data," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 19(7), pages 683-687.
    5. Tommaso Proietti, 2006. "Temporal disaggregation by state space methods: Dynamic regression methods revisited," Econometrics Journal, Royal Economic Society, vol. 9(3), pages 357-372, November.
    6. Kahouli, Sondès, 2011. "Re-examining uranium supply and demand: New insights," Energy Policy, Elsevier, vol. 39(1), pages 358-376, January.
    7. Cecilia Frale, "undated". "Do Surveys Help in Macroeconomic Variables Disaggregation and Estimation?," Working Papers wp2008-2, Department of the Treasury, Ministry of the Economy and of Finance.
    8. Marcellino, Massimiliano & Proietti, Tommaso & Frale, Cecilia & Mazzi, Gian Luigi, 2008. "A Monthly Indicator of the Euro Area GDP," CEPR Discussion Papers 7007, C.E.P.R. Discussion Papers.
    9. Quilis, Enrique M., 2011. "Combining benchmarking and chain-linking for short-term regional forecasting," DES - Working Papers. Statistics and Econometrics. WS ws114130, Universidad Carlos III de Madrid. Departamento de Estadística.
    10. John McDermott & Viv B. Hall, "undated". "A quarterly Post-World War II Real GDP Series for New Zealand," Reserve Bank of New Zealand Discussion Paper Series DP2009/12, Reserve Bank of New Zealand.
    11. Willie Lahari & Alfred A. Haug & Arlene Garces-Ozanne, 2011. "Estimating Quarterly Gdp Data For The South Pacific Island Nations," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 56(01), pages 97-112.
    12. Kyosuke Chikamatsu, Naohisa Hirakata, Yosuke Kido, Kazuki Otaka, 2018. "Nowcasting Japanese GDPs," Bank of Japan Working Paper Series 18-E-18, Bank of Japan.
    13. Alejandro Rodríguez Caro & Santiago Rodríguez Feijoo & Delia Dávila Quintana, 2003. "La trimestralización de variables flujo. Un estudio de simulación de los métodos de desagregación temporal con indicador," Documentos de trabajo conjunto ULL-ULPGC 2003-01, Facultad de Ciencias Económicas de la ULPGC.
    14. Angelini, Elena & Henry, Jerome & Marcellino, Massimiliano, 2006. "Interpolation and backdating with a large information set," Journal of Economic Dynamics and Control, Elsevier, vol. 30(12), pages 2693-2724, December.
    15. Michael Zhemkov, 2022. "Assessment of Monthly GDP Growth Using Temporal Disaggregation Methods," Russian Journal of Money and Finance, Bank of Russia, vol. 81(2), pages 79-104, June.
    16. José Casals & Miguel Jerez & Sonia Sotoca, 2009. "Modelling and forecasting time series sampled at different frequencies," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(4), pages 316-342.
    17. Vladim r Hajko, 2015. "Energy-Gross Domestic Product Nexus: Disaggregated Analysis for the Czech Republic in the Post-Transformation Era," International Journal of Energy Economics and Policy, Econjournals, vol. 5(3), pages 869-888.
    18. Baoline Chen, 2007. "An Empirical Comparison of Methods for Temporal Distribution and Interpolation at the National Accounts," BEA Papers 0077, Bureau of Economic Analysis.
    19. José Manuel Pavía, 2000. "Desagregación conjunta de series anuales: perturbaciones AR(1) multivariante," Investigaciones Economicas, Fundación SEPI, vol. 24(3), pages 727-737, September.
    20. Chiara Perricone, 2018. "Wavelet analysis for temporal disaggregation," CEIS Research Paper 444, Tor Vergata University, CEIS, revised 29 Oct 2018.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jstats:v:5:y:2022:i:1:p:13-202:d:752373. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.