IDEAS home Printed from https://ideas.repec.org/a/sae/enejou/v37y2016i1p101-122.html

Analysis and Forecasting of Electricity Price Risks with Quantile Factor Models

Author

Listed:
  • Derek Bunn
  • Arne Andresen
  • Dipeng Chen
  • Sjur Westgaard

Abstract

Forecasting quantile and value-at-risk levels for commodity prices is methodologically challenging because of the distinctive stochastic properties of the price density functions, volatility clustering and the importance of exogenous factors. Despite this, accurate risk measures have considerable value in trading and risk management with the topic being actively researched for better techniques. We approach the problem by using a multifactor, dynamic, quantile regression formulation, extended to include GARCH properties, and applied to both in-sample estimation and out-of-sample forecasting of traded electricity prices. This captures the specification effects of mean reversion, spikes, time varying volatility and demonstrates how the prices of gas, coal and carbon, forecasts of demand and reserve margin in addition to price volatility influence the electricity price quantiles. We show how the price coefficients for these factors vary substantially across the quantiles and offer a new, useful synthesis of GARCH effects within quantile regression. We also show that a linear quantile regression model outperforms skewed GARCH-t and CAViaR models, as specified on the shocks to conditional expectations, regarding the accuracy of out-of-sample forecasts of value-at-risk.

Suggested Citation

  • Derek Bunn & Arne Andresen & Dipeng Chen & Sjur Westgaard, 2016. "Analysis and Forecasting of Electricity Price Risks with Quantile Factor Models," The Energy Journal, , vol. 37(1), pages 101-122, January.
  • Handle: RePEc:sae:enejou:v:37:y:2016:i:1:p:101-122
    DOI: 10.5547/01956574.37.1.dbun
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.5547/01956574.37.1.dbun
    Download Restriction: no

    File URL: https://libkey.io/10.5547/01956574.37.1.dbun?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Misiorek Adam & Trueck Stefan & Weron Rafal, 2006. "Point and Interval Forecasting of Spot Electricity Prices: Linear vs. Non-Linear Time Series Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 10(3), pages 1-36, September.
    2. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    3. Tryggvi Jónsson & Pierre Pinson & Henrik Madsen & Henrik Aalborg Nielsen, 2014. "Predictive Densities for Day-Ahead Electricity Prices Using Time-Adaptive Quantile Regression," Energies, MDPI, vol. 7(9), pages 1-25, August.
    4. Cathy Chen & Simon Lin & Philip Yu, 2012. "Smooth Transition Quantile Capital Asset Pricing Models with Heteroscedasticity," Computational Economics, Springer;Society for Computational Economics, vol. 40(1), pages 19-48, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Siddiki, Jalal & Singh, Prakash, 2025. "The cost of uncertainty: Analysing the influence of coal price changes, the Russia-Ukraine war and geopolitical risk on risk premiums in the Indian electricity spot market," Energy Economics, Elsevier, vol. 141(C).
    2. Gökgöz, Fazıl & Yücel, Öykü, 2025. "Measuring the long-term impact of wind, run-of-river, solar renewable energy alternatives on market clearing prices," Renewable Energy, Elsevier, vol. 241(C).
    3. Agakishiev, Ilyas & Härdle, Wolfgang Karl & Kopa, Milos & Kozmik, Karel & Petukhina, Alla, 2025. "Multivariate probabilistic forecasting of electricity prices with trading applications," Energy Economics, Elsevier, vol. 141(C).
    4. Bjørndal, Endre & Bjørndal, Mette & Hovdahl, Isabel & Tselika, Kyriaki, 2025. "European market integration and price convergence: A panel quantile regression analysis of NordLink," Discussion Papers 2025/19, Norwegian School of Economics, Department of Business and Management Science.
    5. Gökgöz, Fazıl & Yücel, Öykü, 2024. "Merit-order of dispatchable and variable renewable energy sources in Turkey's day-ahead electricity market," Utilities Policy, Elsevier, vol. 88(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Derek Bunn, Arne Andresen, Dipeng Chen, Sjur Westgaard, 2016. "Analysis and Forecasting of Electricty Price Risks with Quantile Factor Models," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    2. Nowotarski, Jakub & Weron, Rafał, 2018. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.
    3. Marco Bottone & Lea Petrella & Mauro Bernardi, 2021. "Unified Bayesian conditional autoregressive risk measures using the skew exponential power distribution," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(3), pages 1079-1107, September.
    4. Auer, Benjamin R., 2016. "How does Germany's green energy policy affect electricity market volatility? An application of conditional autoregressive range models," Energy Policy, Elsevier, vol. 98(C), pages 621-628.
    5. Gianfreda, Angelica & Ravazzolo, Francesco & Rossini, Luca, 2020. "Comparing the forecasting performances of linear models for electricity prices with high RES penetration," International Journal of Forecasting, Elsevier, vol. 36(3), pages 974-986.
    6. Christopher Koch & Philipp Maskos, 2020. "Passive Balancing Through Intraday Trading: Whether Interactions Between Short-term Trading and Balancing Stabilize Germany s Electricity System," International Journal of Energy Economics and Policy, Econjournals, vol. 10(2), pages 101-112.
    7. Angelica Gianfreda & Derek Bunn, 2018. "A Stochastic Latent Moment Model for Electricity Price Formation," BEMPS - Bozen Economics & Management Paper Series BEMPS46, Faculty of Economics and Management at the Free University of Bozen.
    8. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    9. Christian Pape & Arne Vogler & Oliver Woll & Christoph Weber, 2017. "Forecasting the distributions of hourly electricity spot prices," EWL Working Papers 1705, University of Duisburg-Essen, Chair for Management Science and Energy Economics, revised May 2017.
    10. repec:hum:wpaper:sfb649dp2016-035 is not listed on IDEAS
    11. Manner, Hans & Alavi Fard, Farzad & Pourkhanali, Armin & Tafakori, Laleh, 2019. "Forecasting the joint distribution of Australian electricity prices using dynamic vine copulae," Energy Economics, Elsevier, vol. 78(C), pages 143-164.
    12. López Cabrera, Brenda & Schulz, Franziska, 2016. "Time-adaptive probabilistic forecasts of electricity spot prices with application to risk management," SFB 649 Discussion Papers 2016-035, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    13. Nowotarski, Jakub & Raviv, Eran & Trück, Stefan & Weron, Rafał, 2014. "An empirical comparison of alternative schemes for combining electricity spot price forecasts," Energy Economics, Elsevier, vol. 46(C), pages 395-412.
    14. Cathy Chen & Richard Gerlach, 2013. "Semi-parametric quantile estimation for double threshold autoregressive models with heteroskedasticity," Computational Statistics, Springer, vol. 28(3), pages 1103-1131, June.
    15. Ziel, Florian & Steinert, Rick, 2018. "Probabilistic mid- and long-term electricity price forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 251-266.
    16. Eric Ghysels & Leonardo Iania & Jonas Striaukas, 2018. "Quantile-based Inflation Risk Models," Working Paper Research 349, National Bank of Belgium.
    17. Demiralay, Sercan & Ulusoy, Veysel, 2014. "Value-at-risk Predictions of Precious Metals with Long Memory Volatility Models," MPRA Paper 53229, University Library of Munich, Germany.
    18. Nicholas Apergis, 2015. "Money Demand Sensitivity to Interest Rates: The Case of Japans Zero-Interest Rate Policy," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 5(9), pages 1043-1049, September.
    19. Okhrin, Ostap & Ristig, Alexander & Sheen, Jeffrey R. & Trück, Stefan, 2015. "Conditional systemic risk with penalized copula," SFB 649 Discussion Papers 2015-038, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    20. Weidong Lin & Jose Olmo & Abderrahim Taamouti, 2025. "Portfolio Selection under Systemic Risk," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 57(4), pages 905-949, June.
    21. repec:wyi:journl:002087 is not listed on IDEAS
    22. Jorge E. Galán & María Rodríguez Moreno, 2020. "At-risk measures and financial stability," Financial Stability Review, Banco de España, issue Autumn.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:enejou:v:37:y:2016:i:1:p:101-122. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.