IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Time-varying Multi-regime Models Fitting by Genetic Algorithms

  • Francesco Battaglia
  • Mattheos Protopapas

Many time series exhibit both nonlinearity and nonstationarity. Though both features have often been taken into account separately, few attempts have been proposed to model them simultaneously. We consider threshold models, and present a general model allowing for different regimes both in time and in levels, where regime transitions may happen according to self-exciting, or smoothly varying, or piecewise linear threshold modeling. Since fitting such a model involves the choice of a large number of structural parameters, we propose a procedure based on genetic algorithms, evaluating models by means of a generalized identification criterion. The performance of the proposed procedure is illustrated with a simulation study and applications to some real data.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://comisef.eu/files/wps009.pdf
Download Restriction: no

Paper provided by COMISEF in its series Working Papers with number 009.

as
in new window

Length: 37 pages
Date of creation: 20 Feb 2009
Date of revision:
Handle: RePEc:com:wpaper:009
Contact details of provider: Web page: http://www.comisef.eu

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Baragona, R. & Battaglia, F. & Cucina, D., 2004. "Fitting piecewise linear threshold autoregressive models by means of genetic algorithms," Computational Statistics & Data Analysis, Elsevier, vol. 47(2), pages 277-295, September.
  2. Michael McAller & Marcelo C. Medeiros, 2007. "A multiple regime smooth transition heterogeneous autoregressive model for long memory and asymmetries," Textos para discussão 544, Department of Economics PUC-Rio (Brazil).
  3. Kapetanios, George & Shin, Yongcheol & Snell, Andy, 2003. "Testing for a unit root in the nonlinear STAR framework," Journal of Econometrics, Elsevier, vol. 112(2), pages 359-379, February.
  4. Lin, Chien-Fu Jeff & Terasvirta, Timo, 1994. "Testing the constancy of regression parameters against continuous structural change," Journal of Econometrics, Elsevier, vol. 62(2), pages 211-228, June.
  5. Amado, Cristina & Teräsvirta, Timo, 2008. "Modelling Conditional and Unconditional Heteroskedasticity with Smoothly Time-Varying Structure," SSE/EFI Working Paper Series in Economics and Finance 691, Stockholm School of Economics.
  6. Chatterjee, Sangit & Laudato, Matthew & Lynch, Lucy A., 1996. "Genetic algorithms and their statistical applications: an introduction," Computational Statistics & Data Analysis, Elsevier, vol. 22(6), pages 633-651, October.
  7. Davis, Richard A. & Lee, Thomas C.M. & Rodriguez-Yam, Gabriel A., 2006. "Structural Break Estimation for Nonstationary Time Series Models," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 223-239, March.
  8. n/a, 2001. "Balance of payments prospects in EMU," NIESR Discussion Papers 164, National Institute of Economic and Social Research.
  9. Wu, Berlin & Chang, Chih-Li, 2002. "Using genetic algorithms to parameters (d,r) estimation for threshold autoregressive models," Computational Statistics & Data Analysis, Elsevier, vol. 38(3), pages 315-330, January.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:com:wpaper:009. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Anil Khuman)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.