IDEAS home Printed from https://ideas.repec.org/p/hal/cesptp/halshs-00185369.html
   My bibliography  Save this paper

Changing-regime volatility: A fractionally integrated SETAR model

Author

Listed:
  • Gilles Dufrenot

    (GREQAM - Groupement de Recherche en Économie Quantitative d'Aix-Marseille - EHESS - École des hautes études en sciences sociales - AMU - Aix Marseille Université - ECM - École Centrale de Marseille - CNRS - Centre National de la Recherche Scientifique)

  • Dominique Guegan

    (CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique, PSE - Paris School of Economics - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - ENPC - École des Ponts ParisTech - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement)

  • Anne Peguin-Feissolle

    (GREQAM - Groupement de Recherche en Économie Quantitative d'Aix-Marseille - EHESS - École des hautes études en sciences sociales - AMU - Aix Marseille Université - ECM - École Centrale de Marseille - CNRS - Centre National de la Recherche Scientifique)

Abstract

This paper presents a 2-regime SETAR model with different long-memory processes in both regimes. We briefly present the memory properties of this model and propose an estimation method. Such a process is applied to the absolute and squared returns of five stock indices. A comparison with simple FARIMA models is made using some forecastibility criteria. Our empirical results suggest that our model offers an interesting alternative competing framework to describe the persistent dynamics in modeling the returns.

Suggested Citation

  • Gilles Dufrenot & Dominique Guegan & Anne Peguin-Feissolle, 2008. "Changing-regime volatility: A fractionally integrated SETAR model," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00185369, HAL.
  • Handle: RePEc:hal:cesptp:halshs-00185369
    DOI: 10.1080/09603100600993778
    Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-00185369
    as

    Download full text from publisher

    File URL: https://shs.hal.science/halshs-00185369/document
    Download Restriction: no

    File URL: https://libkey.io/10.1080/09603100600993778?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Soosung Hwang & Steve E. Satchell & Pedro L. Valls Pereira, 2007. "How Persistent is Stock Return Volatility? An Answer with Markov Regime Switching Stochastic Volatility Models," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 34(5‐6), pages 1002-1024, June.
    2. repec:adr:anecst:y:2001:i:62:p:06 is not listed on IDEAS
    3. Wu, Berlin & Chang, Chih-Li, 2002. "Using genetic algorithms to parameters (d,r) estimation for threshold autoregressive models," Computational Statistics & Data Analysis, Elsevier, vol. 38(3), pages 315-330, January.
    4. Iori, Giulia, 2002. "A microsimulation of traders activity in the stock market: the role of heterogeneity, agents' interactions and trade frictions," Journal of Economic Behavior & Organization, Elsevier, vol. 49(2), pages 269-285, October.
    5. Bruce E. Hansen, 2000. "Sample Splitting and Threshold Estimation," Econometrica, Econometric Society, vol. 68(3), pages 575-604, May.
    6. Kim, Chang-Jin & Kim, Myung-Jig, 1996. "Transient Fads and the Crash of '87," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(1), pages 41-58, Jan.-Feb..
    7. Dufrenot, Gilles & Guegan, Dominique & Peguin-Feissolle, Anne, 2005. "Long-memory dynamics in a SETAR model - applications to stock markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 15(5), pages 391-406, December.
    8. repec:ebl:ecbull:v:3:y:2004:i:32:p:1-6 is not listed on IDEAS
    9. Guglielmo Maria Caporale & Luis A. Gil‐Alana, 2007. "Nonlinearities and Fractional Integration in the US Unemployment Rate," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 69(4), pages 521-544, August.
    10. Simone Alfarano & Thomas Lux, 2007. "A Minimal Noise Trader Model with Realistic Time Series Properties," Springer Books, in: Gilles Teyssière & Alan P. Kirman (ed.), Long Memory in Economics, pages 345-361, Springer.
    11. John Geweke & Susan Porter‐Hudak, 1983. "The Estimation And Application Of Long Memory Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 4(4), pages 221-238, July.
    12. Lobato, Ignacio N & Savin, N E, 1998. "Real and Spurious Long-Memory Properties of Stock-Market Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 261-268, July.
    13. Pedro L. Valls Pereira, 2004. "How Persistent is Volatility? An Answer with Stochastic Volatility Models with Markov Regime Switching State Equations," Finance Lab Working Papers flwp_59, Finance Lab, Insper Instituto de Ensino e Pesquisa.
    14. Hassler, Uwe & Wolters, Jurgen, 1995. "Long Memory in Inflation Rates: International Evidence," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(1), pages 37-45, January.
    15. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    16. Granger, C. W. J., 1980. "Long memory relationships and the aggregation of dynamic models," Journal of Econometrics, Elsevier, vol. 14(2), pages 227-238, October.
    17. Thomas Lux & Michele Marchesi, 2000. "Volatility Clustering In Financial Markets: A Microsimulation Of Interacting Agents," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(04), pages 675-702.
    18. Coakley, Jerry & Fuertes, Ana-Marı́a & Pérez, Marı́a-Teresa, 2003. "Numerical issues in threshold autoregressive modeling of time series," Journal of Economic Dynamics and Control, Elsevier, vol. 27(11), pages 2219-2242.
    19. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    20. Beltratti, A. & Morana, C., 2006. "Breaks and persistency: macroeconomic causes of stock market volatility," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 151-177.
    21. A. Ronald Gallant & Chien-Te Hsu & George Tauchen, 1999. "Using Daily Range Data To Calibrate Volatility Diffusions And Extract The Forward Integrated Variance," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 617-631, November.
    22. Bhardwaj, Geetesh & Swanson, Norman R., 2006. "An empirical investigation of the usefulness of ARFIMA models for predicting macroeconomic and financial time series," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 539-578.
    23. Lobato, Ignacio N & Velasco, Carlos, 2000. "Long Memory in Stock-Market Trading Volume," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(4), pages 410-427, October.
    24. van Dijk, Dick & Franses, Philip Hans & Paap, Richard, 2002. "A nonlinear long memory model, with an application to US unemployment," Journal of Econometrics, Elsevier, vol. 110(2), pages 135-165, October.
    25. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    26. Lobato, Ignacio N & Savin, N E, 1998. "Real and Spurious Long-Memory Properties of Stock-Market Data: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 280-283, July.
    27. Hamilton, James D. & Susmel, Raul, 1994. "Autoregressive conditional heteroskedasticity and changes in regime," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 307-333.
    28. Cathy W. S. Chen & Mike K. P. So, 2003. "Subset threshold autoregression," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(1), pages 49-66.
    29. Gilles DUFRENOT & Dominique GUEGAN & Anne PEGUIN-FEISSOLLE, 2003. "A SETAR model with long-memory dynamics," Econometrics 0309002, University Library of Munich, Germany.
    30. Clifford M. Hurvich & Rohit Deo & Julia Brodsky, 1998. "The mean squared error of Geweke and Porter‐Hudak's estimator of the memory parameter of a long‐memory time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 19(1), pages 19-46, January.
    31. Andrea Gaunersdorfer & Cars Hommes & Florian Wagener, 2001. "Adaptive Beliefs and the volatility of asset prices," CeNDEF Workshop Papers, January 2001 5A.1, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    32. Dufrenot, Gilles & Guegan, Dominique & Peguin-Feissolle, Anne, 2005. "Modelling squared returns using a SETAR model with long-memory dynamics," Economics Letters, Elsevier, vol. 86(2), pages 237-243, February.
    33. Morana, Claudio & Beltratti, Andrea, 2002. "The effects of the introduction of the euro on the volatility of European stock markets," Journal of Banking & Finance, Elsevier, vol. 26(10), pages 2047-2064, October.
    34. Luis A. Gil-Alana, 2001. "Estimation of Fractionally ARIMA Models for the UK Unemployment," Annals of Economics and Statistics, GENES, issue 62, pages 127-137.
    35. So, Mike K P & Lam, K & Li, W K, 1998. "A Stochastic Volatility Model with Markov Switching," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 244-253, April.
    36. Morana, Claudio & Beltratti, Andrea, 2004. "Structural change and long-range dependence in volatility of exchange rates: either, neither or both?," Journal of Empirical Finance, Elsevier, vol. 11(5), pages 629-658, December.
    37. Simone Alfarano & Thomas Lux, 2002. "A minimal noise trader model with realistic time series," Computing in Economics and Finance 2002 317, Society for Computational Economics.
    38. Hamilton, James D & Gang, Lin, 1996. "Stock Market Volatility and the Business Cycle," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(5), pages 573-593, Sept.-Oct.
    39. Hansen Bruce E., 1997. "Inference in TAR Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 2(1), pages 1-16, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohamed Boutahar & Gilles Dufrénot & Anne Péguin-Feissolle, 2008. "A Simple Fractionally Integrated Model with a Time-varying Long Memory Parameter d t," Computational Economics, Springer;Society for Computational Economics, vol. 31(3), pages 225-241, April.
    2. Goldman Elena & Nam Jouahn & Tsurumi Hiroki & Wang Jun, 2013. "Regimes and long memory in realized volatility," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 17(5), pages 521-549, December.
    3. Boubaker Heni, 2018. "A Generalized ARFIMA Model with Smooth Transition Fractional Integration Parameter," Journal of Time Series Econometrics, De Gruyter, vol. 10(1), pages 1-20, January.
    4. Boubaker Heni & Canarella Giorgio & Gupta Rangan & Miller Stephen M., 2017. "Time-varying persistence of inflation: evidence from a wavelet-based approach," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 21(4), pages 1-18, September.
    5. Aloy Marcel & Dufrénot Gilles & Tong Charles Lai & Peguin-Feissolle Anne, 2013. "A smooth transition long-memory model," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 17(3), pages 281-296, May.
    6. Heni Boubaker & Nadia Sghaier, 2014. "Wavelet based Estimation of Time- Varying Long Memory Model with Nonlinear Fractional Integration Parameter," Working Papers 2014-284, Department of Research, Ipag Business School.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dufrenot, Gilles & Guegan, Dominique & Peguin-Feissolle, Anne, 2005. "Long-memory dynamics in a SETAR model - applications to stock markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 15(5), pages 391-406, December.
    2. Beltratti, A. & Morana, C., 2006. "Breaks and persistency: macroeconomic causes of stock market volatility," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 151-177.
    3. McAleer, Michael & Medeiros, Marcelo C., 2008. "A multiple regime smooth transition Heterogeneous Autoregressive model for long memory and asymmetries," Journal of Econometrics, Elsevier, vol. 147(1), pages 104-119, November.
    4. Laurent Ferrara & Dominique Guégan, 2006. "Detection of the Industrial Business Cycle using SETAR Models," Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2005(3), pages 353-371.
    5. Scharth, Marcel & Medeiros, Marcelo C., 2009. "Asymmetric effects and long memory in the volatility of Dow Jones stocks," International Journal of Forecasting, Elsevier, vol. 25(2), pages 304-327.
    6. Boubaker Heni & Canarella Giorgio & Gupta Rangan & Miller Stephen M., 2017. "Time-varying persistence of inflation: evidence from a wavelet-based approach," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 21(4), pages 1-18, September.
    7. Claudio Morana & Andrea Beltratti, 2006. "Structural breaks and common factors in the volatility of the Fama-French factor portfolios," Applied Financial Economics, Taylor & Francis Journals, vol. 16(14), pages 1059-1073.
    8. LeBaron, Blake, 2003. "Non-Linear Time Series Models in Empirical Finance,: Philip Hans Franses and Dick van Dijk, Cambridge University Press, Cambridge, 2000, 296 pp., Paperback, ISBN 0-521-77965-0, $33, [UK pound]22.95, [," International Journal of Forecasting, Elsevier, vol. 19(4), pages 751-752.
    9. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, September.
    10. Härdle, Wolfgang Karl & Mungo, Julius, 2007. "Long memory persistence in the factor of Implied volatility dynamics," SFB 649 Discussion Papers 2007-027, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    11. Eric Hillebrand & Marcelo Cunha Medeiros, 2010. "Asymmetries, breaks, and long-range dependence: An estimation framework for daily realized volatility," Textos para discussão 578, Department of Economics PUC-Rio (Brazil).
    12. Bhandari, Avishek, 2020. "Long memory and fractality among global equity markets: A multivariate wavelet approach," MPRA Paper 99653, University Library of Munich, Germany.
    13. Kunal Saha & Vinodh Madhavan & Chandrashekhar G. R. & David McMillan, 2020. "Pitfalls in long memory research," Cogent Economics & Finance, Taylor & Francis Journals, vol. 8(1), pages 1733280-173, January.
    14. Lux, Thomas & Alfarano, Simone, 2016. "Financial power laws: Empirical evidence, models, and mechanisms," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 3-18.
    15. Adnen Ben Nasr & Ahdi Noomen Ajmi & Rangan Gupta, 2014. "Modelling the volatility of the Dow Jones Islamic Market World Index using a fractionally integrated time-varying GARCH (FITVGARCH) model," Applied Financial Economics, Taylor & Francis Journals, vol. 24(14), pages 993-1004, July.
    16. Baillie, Richard T. & Morana, Claudio, 2009. "Modelling long memory and structural breaks in conditional variances: An adaptive FIGARCH approach," Journal of Economic Dynamics and Control, Elsevier, vol. 33(8), pages 1577-1592, August.
    17. Baillie, Richard T. & Morana, Claudio, 2009. "Modelling long memory and structural breaks in conditional variances: An adaptive FIGARCH approach," Journal of Economic Dynamics and Control, Elsevier, vol. 33(8), pages 1577-1592, August.
    18. Carmen Broto & Esther Ruiz, 2004. "Estimation methods for stochastic volatility models: a survey," Journal of Economic Surveys, Wiley Blackwell, vol. 18(5), pages 613-649, December.
    19. Bhardwaj, Geetesh & Swanson, Norman R., 2006. "An empirical investigation of the usefulness of ARFIMA models for predicting macroeconomic and financial time series," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 539-578.
    20. Avishek Bhandari & Bandi Kamaiah, 2021. "Long Memory and Fractality Among Global Equity Markets: a Multivariate Wavelet Approach," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(1), pages 23-37, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:cesptp:halshs-00185369. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.