IDEAS home Printed from
   My bibliography  Save this paper

Modelling squared returns using a SETAR model with long-memory dynamics


  • Gilles Dufrénot

    (GREQAM - Groupement de Recherche en Économie Quantitative d'Aix-Marseille - ECM - Ecole Centrale de Marseille - CNRS - Centre National de la Recherche Scientifique - AMU - Aix Marseille Université - EHESS - École des hautes études en sciences sociales)

  • Dominique Guegan

    () (IDHE - Institutions et Dynamiques Historiques de l'Economie - ENS Cachan - École normale supérieure - Cachan - UP1 - Université Panthéon-Sorbonne - UP8 - Université Paris 8, Vincennes-Saint-Denis - UPN - Université Paris Nanterre - CNRS - Centre National de la Recherche Scientifique)

  • Anne Peguin-Feissolle

    (GREQAM - Groupement de Recherche en Économie Quantitative d'Aix-Marseille - ECM - Ecole Centrale de Marseille - CNRS - Centre National de la Recherche Scientifique - AMU - Aix Marseille Université - EHESS - École des hautes études en sciences sociales)


This paper presents a 2-regime SETAR model for the volatility with a long-memory process in the first regime and a short-memory process in the second regime. Persistence properties are studied and estimation methods are proposed. Such a process is applied to stock indices and individual asset prices.

Suggested Citation

  • Gilles Dufrénot & Dominique Guegan & Anne Peguin-Feissolle, 2005. "Modelling squared returns using a SETAR model with long-memory dynamics," Post-Print halshs-00179285, HAL.
  • Handle: RePEc:hal:journl:halshs-00179285
    Note: View the original document on HAL open archive server:

    Download full text from publisher

    File URL:
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    1. A. Ronald Gallant & Chien-Te Hsu & George Tauchen, 1999. "Using Daily Range Data To Calibrate Volatility Diffusions And Extract The Forward Integrated Variance," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 617-631, November.
    2. Granger, C. W. J., 1980. "Long memory relationships and the aggregation of dynamic models," Journal of Econometrics, Elsevier, vol. 14(2), pages 227-238, October.
    3. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    4. Schwert, G William, 1990. "Stock Volatility and the Crash of '87," Review of Financial Studies, Society for Financial Studies, vol. 3(1), pages 77-102.
    5. Dominique Guegan, 2003. "A prospective study of the k-factor Gegenbauer processes with heteroscedastic errors and an application to inflation rates," Post-Print halshs-00201314, HAL.
    6. Cao, C Q & Tsay, R S, 1992. "Nonlinear Time-Series Analysis of Stock Volatilities," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 7(S), pages 165-185, Suppl. De.
    7. van Dijk, Dick & Franses, Philip Hans & Paap, Richard, 2002. "A nonlinear long memory model, with an application to US unemployment," Journal of Econometrics, Elsevier, vol. 110(2), pages 135-165, October.
    8. Benjamin M. Friedman & David I. Laibson, 1989. "Economic Implications of Extraordinary Movements in Stock Prices," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 20(2), pages 137-190.
    9. Sassan Alizadeh & Michael W. Brandt & Francis X. Diebold, 2002. "Range-Based Estimation of Stochastic Volatility Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1047-1091, June.
    10. Brooks, Chris, 2001. "A Double-Threshold GARCH Model for the French Franc/Deutschmark Exchange Rate," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 20(2), pages 135-143, March.
    11. Richard Paap & Philip Hans Franses & Marco Van Der Leij, 2002. "Modelling and forecasting level shifts in absolute returns," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 601-616.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Laurent Ferrara & Dominique Guégan, 2006. "Detection of the Industrial Business Cycle using SETAR Models," Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2005(3), pages 353-371.
    2. Mohamed Boutahar & Gilles Dufrénot & Anne Péguin-Feissolle, 2008. "A Simple Fractionally Integrated Model with a Time-varying Long Memory Parameter d t," Computational Economics, Springer;Society for Computational Economics, vol. 31(3), pages 225-241, April.
    3. Gil-Alana, Luis A. & Shittu, Olanrewaju I. & Yaya, OlaOluwa S., 2014. "On the persistence and volatility in European, American and Asian stocks bull and bear markets," Journal of International Money and Finance, Elsevier, vol. 40(C), pages 149-162.
    4. repec:hal:journl:halshs-00185369 is not listed on IDEAS
    5. Dufrenot, Gilles & Guegan, Dominique & Peguin-Feissolle, Anne, 2005. "Long-memory dynamics in a SETAR model - applications to stock markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 15(5), pages 391-406, December.
    6. repec:bpj:sndecm:v:21:y:2017:i:4:p:18:n:6 is not listed on IDEAS
    7. Aloy Marcel & Tong Charles Lai & Peguin-Feissolle Anne & Dufrénot Gilles, 2013. "A smooth transition long-memory model," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 17(3), pages 281-296, May.
    8. Boubaker Heni & Canarella Giorgio & Miller Stephen M. & Gupta Rangan, 2017. "Time-varying persistence of inflation: evidence from a wavelet-based approach," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 21(4), pages 1-18, September.
    9. Heni Boubaker & Nadia Sghaier, 2014. "Wavelet based Estimation of Time- Varying Long Memory Model with Nonlinear Fractional Integration Parameter," Working Papers 2014-284, Department of Research, Ipag Business School.

    More about this item


    Stock indices; FARIMA models; SETAR; Long-memory;


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:halshs-00179285. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (CCSD). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.