IDEAS home Printed from https://ideas.repec.org/p/hal/journl/halshs-00390136.html

A simple fractionally integrated model with a time-varying long memory parameter dt

Author

Listed:
  • Mohamed Boutahar

    (GREQAM - Groupement de Recherche en Économie Quantitative d'Aix-Marseille - EHESS - École des hautes études en sciences sociales - AMU - Aix Marseille Université - ECM - École Centrale de Marseille - CNRS - Centre National de la Recherche Scientifique)

  • Gilles Dufrénot

    (GREQAM - Groupement de Recherche en Économie Quantitative d'Aix-Marseille - EHESS - École des hautes études en sciences sociales - AMU - Aix Marseille Université - ECM - École Centrale de Marseille - CNRS - Centre National de la Recherche Scientifique)

  • Anne Peguin-Feissolle

    (GREQAM - Groupement de Recherche en Économie Quantitative d'Aix-Marseille - EHESS - École des hautes études en sciences sociales - AMU - Aix Marseille Université - ECM - École Centrale de Marseille - CNRS - Centre National de la Recherche Scientifique)

Abstract

This paper generalizes the standard long memory modeling by assuming that the long memory parameter d is stochastic and time-varying: we introduce a STAR process on this parameter characterized by a logistic function. We propose an estimation method of this model. Some simulation experiments are conducted. The empirical results suggest that this new model offers an interesting alternative competing framework to describe the persistent dynamics in modeling some financial series.

Suggested Citation

  • Mohamed Boutahar & Gilles Dufrénot & Anne Peguin-Feissolle, 2008. "A simple fractionally integrated model with a time-varying long memory parameter dt," Post-Print halshs-00390136, HAL.
  • Handle: RePEc:hal:journl:halshs-00390136
    DOI: 10.1007/s10614-007-9115-1
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luisa Bisaglia & Matteo Grigoletto, 2018. "A new time-varying model for forecasting long-memory series," Papers 1812.07295, arXiv.org.
    2. Souhir, Ben Amor & Heni, Boubaker & Lotfi, Belkacem, 2019. "Price risk and hedging strategies in Nord Pool electricity market evidence with sector indexes," Energy Economics, Elsevier, vol. 80(C), pages 635-655.
    3. Luisa Bisaglia & Matteo Grigoletto, 2021. "A new time-varying model for forecasting long-memory series," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 139-155, March.
    4. Boubaker Heni, 2018. "A Generalized ARFIMA Model with Smooth Transition Fractional Integration Parameter," Journal of Time Series Econometrics, De Gruyter, vol. 10(1), pages 1-20, January.
    5. Boubaker Heni & Canarella Giorgio & Gupta Rangan & Miller Stephen M., 2017. "Time-varying persistence of inflation: evidence from a wavelet-based approach," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 21(4), pages 1-18, September.
    6. Aloy Marcel & Dufrénot Gilles & Tong Charles Lai & Peguin-Feissolle Anne, 2013. "A smooth transition long-memory model," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 17(3), pages 281-296, May.
    7. Heni Boubaker & Nadia Sghaier, 2014. "Wavelet based Estimation of Time- Varying Long Memory Model with Nonlinear Fractional Integration Parameter," Working Papers 2014-284, Department of Research, Ipag Business School.
    8. Zhao, Zifeng & Zhang, Zhengjun & Chen, Rong, 2018. "Modeling maxima with autoregressive conditional Fréchet model," Journal of Econometrics, Elsevier, vol. 207(2), pages 325-351.
    9. Massimiliano Caporin & Rangan Gupta, 2017. "Time-varying persistence in US inflation," Empirical Economics, Springer, vol. 53(2), pages 423-439, September.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:halshs-00390136. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.