IDEAS home Printed from https://ideas.repec.org/p/sce/scecf2/317.html
   My bibliography  Save this paper

A minimal noise trader model with realistic time series

Author

Listed:
  • Simone Alfarano
  • Thomas Lux

Abstract

No abstract is available for this item.

Suggested Citation

  • Simone Alfarano & Thomas Lux, 2002. "A minimal noise trader model with realistic time series," Computing in Economics and Finance 2002 317, Society for Computational Economics.
  • Handle: RePEc:sce:scecf2:317
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gilles Dufrenot & Dominique Guegan & Anne Peguin-Feissolle, 2008. "Changing-regime volatility: a fractionally integrated SETAR model," Applied Financial Economics, Taylor & Francis Journals, vol. 18(7), pages 519-526.
    2. David Morton de Lachapelle & Damien Challet, 2009. "Turnover, account value and diversification of real traders: evidence of collective portfolio optimizing behavior," Papers 0912.4723, arXiv.org, revised Jun 2010.
    3. Alfarano, Simone & Lux, Thomas, 2007. "A Noise Trader Model As A Generator Of Apparent Financial Power Laws And Long Memory," Macroeconomic Dynamics, Cambridge University Press, vol. 11(S1), pages 80-101, November.
    4. Alfarano, Simone & Lux, Thomas & Wagner, Friedrich, 2010. "Excess Volatility and Herding in an Artificial Financial Market: Analytical Approach and Estimation," MPRA Paper 24719, University Library of Munich, Germany.
    5. Simone Alfarano & Thomas Lux & Friedrich Wagner, 2005. "Estimation of Agent-Based Models: The Case of an Asymmetric Herding Model," Computational Economics, Springer;Society for Computational Economics, vol. 26(1), pages 19-49, August.

    More about this item

    Keywords

    Herd behaviour; speculative dynamics; fat tails; volatility clustering;

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sce:scecf2:317. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum). General contact details of provider: http://edirc.repec.org/data/sceeeea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.