IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

A Noise Trader Model As A Generator Of Apparent Financial Power Laws And Long Memory

  • ALFARANO, SIMONE
  • LUX, THOMAS

In various agent-based models the stylized facts of financial markets (unit-roots, fat tails and volatility clustering) have been shown to emerge from the interactions of agents. However, the complexity of these models often limits their analytical accessibility. In this paper we show that even a very simple model of a financial market with heterogeneous interacting agents is capable of reproducing these ubiquitous statistical properties. The simplicity of our approach permits to derive some analytical insights using concepts from statistical mechanics. In our model, traders are divided into two groups: fundamentalists and chartists, and their interactions are based on a variant of the herding mechanism introduced by Kirman [1993]. The statistical analysis of simulated data points toward long-term dependence in the auto-correlations of squared and absolute returns and hyperbolic decay in the tail of the distribution of raw returns, both with estimated decay parameters in the same range like those of empirical data. Theoretical analysis, however, excludes the possibility of ‘true’ scaling behavior because of the Markovian nature of the underlying process and the boundedness of returns. The model, therefore, only mimics power law behavior. Similarly as with the phenomenological volatility models analyzed in LeBaron [2001], the usual statistical tests are not able to distinguish between true or pseudo-scaling laws in the dynamics of our artificial market

(This abstract was borrowed from another version of this item.)

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://journals.cambridge.org/abstract_S1365100506060299
File Function: link to article abstract page
Download Restriction: no

Article provided by Cambridge University Press in its journal Macroeconomic Dynamics.

Volume (Year): 11 (2007)
Issue (Month): S1 (November)
Pages: 80-101

as
in new window

Handle: RePEc:cup:macdyn:v:11:y:2007:i:s1:p:80-101_06
Contact details of provider: Postal:
Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK

Web page: http://journals.cambridge.org/jid_MDY
Email:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Chen, Shu-Heng & Yeh, Chia-Hsuan, 2002. "On the emergent properties of artificial stock markets: the efficient market hypothesis and the rational expectations hypothesis," Journal of Economic Behavior & Organization, Elsevier, vol. 49(2), pages 217-239, October.
  2. Gaunersdorfer, A. & Hommes, C.H., 2000. "A Nonlinear Structural Model for Volatility Clustering," CeNDEF Working Papers 00-02, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
  3. Andersson, Michael K. & Eklund, Bruno & Lyhagen, Johan, 1999. "A Simple Linear Time Series Model with Misleading Nonlinear Properties," SSE/EFI Working Paper Series in Economics and Finance 300, Stockholm School of Economics.
  4. Lux, T. & M. Marchesi, . "Volatility Clustering in Financial Markets: A Micro-Simulation of Interacting Agents," Discussion Paper Serie B 437, University of Bonn, Germany, revised Jul 1998.
  5. Arifovic, Jasmina & Gencay, Ramazan, 2000. "Statistical properties of genetic learning in a model of exchange rate," Journal of Economic Dynamics and Control, Elsevier, vol. 24(5-7), pages 981-1005, June.
  6. P. Bak & M. Paczuski & Martin Shubik, 1996. "Price Variations in a Stock Market with Many Agents," Cowles Foundation Discussion Papers 1132, Cowles Foundation for Research in Economics, Yale University.
  7. Gilles Teyssière & Alan Kirman, 2001. "Microeconomic Models for Long-Memory in the Volatility of Financial Time Series," CeNDEF Workshop Papers, January 2001 5A.4, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
  8. Wagner, Friedrich, 2003. "Volatility cluster and herding," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 322(C), pages 607-619.
  9. Simone Alfarano & Thomas Lux & Friedrich Wagner, 2006. "Time-Variation of Higher Moments in a Financial Market with Heterogeneous Agents: An Analytical Approach," Working Papers wpn06-01, Warwick Business School, Finance Group.
  10. Diebold, Francis X. & Inoue, Atsushi, 2001. "Long memory and regime switching," Journal of Econometrics, Elsevier, vol. 105(1), pages 131-159, November.
  11. Gaunersdorfer, A. & Hommes, C.H. & Wagener, F.O.O., 2000. "Bifurcation Routes to Volatility Clustering," CeNDEF Working Papers 00-04, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
  12. Giulia Iori, 2000. "A microsimulation of traders activity in the stock market: the role of heterogeneity, agents' interactions and trade frictions," Finance 0004007, EconWPA.
  13. Farmer, J. Doyne & Joshi, Shareen, 2002. "The price dynamics of common trading strategies," Journal of Economic Behavior & Organization, Elsevier, vol. 49(2), pages 149-171, October.
  14. B. B. Mandelbrot, 2001. "Stochastic volatility, power laws and long memory," Quantitative Finance, Taylor & Francis Journals, vol. 1(6), pages 558-559.
  15. Shu-Heng Chen & Thomas Lux & Michele Marchesi, 1999. "Testing for Non-Linear Structure in an Artificial Financial Market," Discussion Paper Serie B 447, University of Bonn, Germany.
  16. I.N. Lobato & N.E. Savin, 1996. "Real and Spurious Long Memory Properties of Stock Market Data," Econometrics 9605004, EconWPA, revised 26 Sep 1996.
  17. Youssefmir, Michael & Huberman, Bernardo A., 1997. "Clustered volatility in multiagent dynamics," Journal of Economic Behavior & Organization, Elsevier, vol. 32(1), pages 101-118, January.
  18. D. Challet & A. Chessa & M. Marsili & Y-C. Zhang, 2001. "From Minority Games to real markets," Quantitative Finance, Taylor & Francis Journals, vol. 1(1), pages 168-176.
  19. Simone Alfarano & Thomas Lux, 2002. "A minimal noise trader model with realistic time series," Computing in Economics and Finance 2002 317, Society for Computational Economics.
  20. Granger, Clive W. J. & Terasvirta, Timo, 1999. "A simple nonlinear time series model with misleading linear properties," Economics Letters, Elsevier, vol. 62(2), pages 161-165, February.
  21. Alan Kirman, 1993. "Ants, Rationality, and Recruitment," The Quarterly Journal of Economics, Oxford University Press, vol. 108(1), pages 137-156.
  22. Lux, Thomas & Schornstein, Sascha, 2002. "Genetic learning as an explanation of stylized facts of foreign exchange markets," Discussion Paper Series 1: Economic Studies 2002,29, Deutsche Bundesbank, Research Centre.
  23. B. LeBaron, 2001. "Stochastic volatility as a simple generator of apparent financial power laws and long memory," Quantitative Finance, Taylor & Francis Journals, vol. 1(6), pages 621-631.
  24. Georges, Christophre, 2006. "Learning with misspecification in an artificial currency market," Journal of Economic Behavior & Organization, Elsevier, vol. 60(1), pages 70-84, May.
  25. LeBaron, Blake, 2000. "Agent-based computational finance: Suggested readings and early research," Journal of Economic Dynamics and Control, Elsevier, vol. 24(5-7), pages 679-702, June.
  26. Jeffrey A. Frankel & Kenneth A. Froot, 1986. "The Dollar as an Irrational Speculative Bubble: A Tale of Fundamentalisists," NBER Working Papers 1854, National Bureau of Economic Research, Inc.
  27. Beja, Avraham & Goldman, M Barry, 1980. " On the Dynamic Behavior of Prices in Disequilibrium," Journal of Finance, American Finance Association, vol. 35(2), pages 235-48, May.
  28. De Vries, C.G. & Leuven, K.U., 1994. "Stylized Facts of Nominal Exchange Rate Returns," Papers 94-002, Purdue University, Krannert School of Management - Center for International Business Education and Research (CIBER).
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cup:macdyn:v:11:y:2007:i:s1:p:80-101_06. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Keith Waters)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.