IDEAS home Printed from https://ideas.repec.org/p/zbw/cauewp/1122.html
   My bibliography  Save this paper

Genetic learning as an explanation of stylized facts of foreign exchange markets

Author

Listed:
  • Lux, Thomas
  • Schornstein, Sascha

Abstract

This paper revisits the Kareken-Wallace model of exchange rate formation in a two-country overlapping generations world. Following the seminal paper by Arifovic (Journal of Political Economy, 104, 1996, 510 – 541) we investigate a dynamic version of the model in which agents? decision rules are updated using genetic algorithms. Our main interest is in whether the equilibrium dynamics resulting from this learning process helps to explain the main stylized facts of free-floating exchange rates (unit roots in levels together with fat tails in returns and volatility clustering). Our time series analysis of simulated data indicates that for particular parameterizations, the characteristics of the exchange rate dynamics are, in fact, very similar to those of empirical data. The similarity appears to be quite insensitive with respect to some of the ingredients of the GA algorithm (i.e. utility-based versus rank-based or tournament selection, binary or real coding). However, appearance or not of realistic time series characteristics depends crucially on the mutation probability (which should be low) and the number of agents (not more than about 1000). With a larger population, this collective learning dynamics looses its realistic appearance and instead exhibits regular periodic oscillations of the agents? choice variables.

Suggested Citation

  • Lux, Thomas & Schornstein, Sascha, 2003. "Genetic learning as an explanation of stylized facts of foreign exchange markets," Economics Working Papers 2003-12, Christian-Albrechts-University of Kiel, Department of Economics.
  • Handle: RePEc:zbw:cauewp:1122
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/3030/1/EWP-2003-12.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Brock,W.A. & Hommes,C.H., 2001. "Evolutionary dynamics in financial markets with many trader types," Working papers 7, Wisconsin Madison - Social Systems.
    2. C. Chiarella & X-Z. He, 2001. "Asset price and wealth dynamics under heterogeneous expectations," Quantitative Finance, Taylor & Francis Journals, vol. 1(5), pages 509-526.
    3. Andrea Gaunersdorfer & Cars Hommes, 2007. "A Nonlinear Structural Model for Volatility Clustering," Springer Books, in: Gilles Teyssière & Alan P. Kirman (ed.), Long Memory in Economics, pages 265-288, Springer.
    4. Iori, Giulia, 2002. "A microsimulation of traders activity in the stock market: the role of heterogeneity, agents' interactions and trade frictions," Journal of Economic Behavior & Organization, Elsevier, vol. 49(2), pages 269-285, October.
    5. Hens, Thorsten & Schenk-Hoppe, Klaus Reiner, 2005. "Evolutionary stability of portfolio rules in incomplete markets," Journal of Mathematical Economics, Elsevier, vol. 41(1-2), pages 43-66, February.
    6. Carl Chiarella & Tony He, 2002. "An Adaptive Model on Asset Pricing and Wealth Dynamics with Heterogeneous Trading Strategies," Computing in Economics and Finance 2002 135, Society for Computational Economics.
    7. Thomas Lux & Michele Marchesi, 1999. "Scaling and criticality in a stochastic multi-agent model of a financial market," Nature, Nature, vol. 397(6719), pages 498-500, February.
    8. William A. Brock & Cars H. Hommes, 1997. "A Rational Route to Randomness," Econometrica, Econometric Society, vol. 65(5), pages 1059-1096, September.
    9. Kirman Alan & Teyssière Gilles, 2002. "Microeconomic Models for Long Memory in the Volatility of Financial Time Series," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 5(4), pages 1-23, January.
    10. William A. Brock & Cars H. Hommes, 2001. "A Rational Route to Randomness," Chapters, in: W. D. Dechert (ed.), Growth Theory, Nonlinear Dynamics and Economic Modelling, chapter 16, pages 402-438, Edward Elgar Publishing.
    11. Thorsten Hens & Klaus Schenk-Hopp�, "undated". "Evolution of Portfolio Rules in Incomplete Markets," IEW - Working Papers 074, Institute for Empirical Research in Economics - University of Zurich.
    12. Chia-Hsuan Yeh, Shu-Heng Chen, 2001. "The Influence of Market Size in an Artificial Stock Market: The Approach Based on Genetic Programming," Computing in Economics and Finance 2001 74, Society for Computational Economics.
    13. Damien Challet & Matteo Marsili, 2002. "Criticality and finite size effects in a simple realistic model of stock market," Papers cond-mat/0210549, arXiv.org, revised Dec 2002.
    14. C, R & K, G, 2003. "In this issue ..," The Electricity Journal, Elsevier, vol. 16(1), pages 2-2.
    15. Arifovic, Jasmina, 1996. "The Behavior of the Exchange Rate in the Genetic Algorithm and Experimental Economies," Journal of Political Economy, University of Chicago Press, vol. 104(3), pages 510-541, June.
    16. Chen, Shu-Heng & Lux, Thomas & Marchesi, Michele, 2001. "Testing for non-linear structure in an artificial financial market," Journal of Economic Behavior & Organization, Elsevier, vol. 46(3), pages 327-342, November.
    17. Arifovic, Jasmina & Gencay, Ramazan, 2000. "Statistical properties of genetic learning in a model of exchange rate," Journal of Economic Dynamics and Control, Elsevier, vol. 24(5-7), pages 981-1005, June.
    18. Meese, Richard A. & Rogoff, Kenneth, 1983. "Empirical exchange rate models of the seventies : Do they fit out of sample?," Journal of International Economics, Elsevier, vol. 14(1-2), pages 3-24, February.
    19. Stefan Bornholdt, 2001. "Expectation Bubbles In A Spin Model Of Markets: Intermittency From Frustration Across Scales," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 12(05), pages 667-674.
    20. Egenter, E. & Lux, T. & Stauffer, D., 1999. "Finite-size effects in Monte Carlo simulations of two stock market models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 268(1), pages 250-256.
    21. Bilson, John F O, 1981. "The "Speculative Efficiency" Hypothesis," The Journal of Business, University of Chicago Press, vol. 54(3), pages 435-451, July.
    22. Blume, Lawrence & Easley, David, 1992. "Evolution and market behavior," Journal of Economic Theory, Elsevier, vol. 58(1), pages 9-40, October.
    23. Gençay, Ramazan & Dacorogna, Michel & Muller, Ulrich A. & Pictet, Olivier & Olsen, Richard, 2001. "An Introduction to High-Frequency Finance," Elsevier Monographs, Elsevier, edition 1, number 9780122796715.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hommes, Cars H., 2006. "Heterogeneous Agent Models in Economics and Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 23, pages 1109-1186, Elsevier.
    2. Lux, Thomas, 2008. "Stochastic behavioral asset pricing models and the stylized facts," Kiel Working Papers 1426, Kiel Institute for the World Economy (IfW Kiel).
    3. Brock, William A. & Hommes, Cars H. & Wagener, Florian O. O., 2005. "Evolutionary dynamics in markets with many trader types," Journal of Mathematical Economics, Elsevier, vol. 41(1-2), pages 7-42, February.
    4. Lux, Thomas & Alfarano, Simone, 2016. "Financial power laws: Empirical evidence, models, and mechanisms," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 3-18.
    5. Lux, Thomas, 2008. "Stochastic behavioral asset pricing models and the stylized facts," Economics Working Papers 2008-08, Christian-Albrechts-University of Kiel, Department of Economics.
    6. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2007. "Agent-based Models of Financial Markets," Papers physics/0701140, arXiv.org.
    7. Carl Chiarella & Roberto Dieci & Xue-Zhong He, 2008. "Heterogeneity, Market Mechanisms, and Asset Price Dynamics," Research Paper Series 231, Quantitative Finance Research Centre, University of Technology, Sydney.
    8. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2001. "Microscopic Models of Financial Markets," Papers cond-mat/0110354, arXiv.org.
    9. Cars Hommes & Florian Wagener, 2008. "Complex Evolutionary Systems in Behavioral Finance," Tinbergen Institute Discussion Papers 08-054/1, Tinbergen Institute.
    10. Hommes, C.H., 2005. "Heterogeneous Agent Models in Economics and Finance, In: Handbook of Computational Economics II: Agent-Based Computational Economics, edited by Leigh Tesfatsion and Ken Judd , Elsevier, Amsterdam 2006," CeNDEF Working Papers 05-03, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    11. Youwei Li & Xue-Zhong He, 2005. "Long Memory, Heterogeneity, and Trend Chasing," Computing in Economics and Finance 2005 113, Society for Computational Economics.
    12. Simone Alfarano & Thomas Lux, 2007. "A Minimal Noise Trader Model with Realistic Time Series Properties," Springer Books, in: Gilles Teyssière & Alan P. Kirman (ed.), Long Memory in Economics, pages 345-361, Springer.
    13. Alfarano, Simone & Lux, Thomas, 2007. "A Noise Trader Model As A Generator Of Apparent Financial Power Laws And Long Memory," Macroeconomic Dynamics, Cambridge University Press, vol. 11(S1), pages 80-101, November.
    14. He, Xue-Zhong & Li, Youwei, 2007. "Power-law behaviour, heterogeneity, and trend chasing," Journal of Economic Dynamics and Control, Elsevier, vol. 31(10), pages 3396-3426, October.
    15. Lux, Thomas, 2006. "Financial power laws: Empirical evidence, models, and mechanism," Economics Working Papers 2006-12, Christian-Albrechts-University of Kiel, Department of Economics.
    16. Amilon, Henrik, 2008. "Estimation of an adaptive stock market model with heterogeneous agents," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 342-362, March.
    17. Andrea Gaunersdorfer & Cars Hommes, 2007. "A Nonlinear Structural Model for Volatility Clustering," Springer Books, in: Gilles Teyssière & Alan P. Kirman (ed.), Long Memory in Economics, pages 265-288, Springer.
    18. Torsten Trimborn & Philipp Otte & Simon Cramer & Maximilian Beikirch & Emma Pabich & Martin Frank, 2020. "SABCEMM: A Simulator for Agent-Based Computational Economic Market Models," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 707-744, February.
    19. Anufriev, M. & Dindo, P.D.E., 2007. "Wealth Selection in a Financial Market with Heterogeneous Agents," CeNDEF Working Papers 07-10, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    20. Anufriev, Mikhail & Dindo, Pietro, 2010. "Wealth-driven selection in a financial market with heterogeneous agents," Journal of Economic Behavior & Organization, Elsevier, vol. 73(3), pages 327-358, March.

    More about this item

    Keywords

    learning; genetic algorithms; exchange rate dynamics;
    All these keywords.

    JEL classification:

    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
    • F31 - International Economics - - International Finance - - - Foreign Exchange
    • D84 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Expectations; Speculations

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:cauewp:1122. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/vakiede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.