IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Genetic learning as an explanation of stylized facts of foreign exchange markets

  • Lux, Thomas
  • Schornstein, Sascha

This paper revisits the Kareken-Wallace model of exchange rate formation in a two-country overlapping generations world. Following the seminal paper by Arifovic (Journal of Political Economy, 104, 1996, 510 – 541) we investigate a dynamic version of the model in which agents? decision rules are updated using genetic algorithms. Our main interest is in whether the equilibrium dynamics resulting from this learning process helps to explain the main stylized facts of free-floating exchange rates (unit roots in levels together with fat tails in returns and volatility clustering). Our time series analysis of simulated data indicates that for particular parameterizations, the characteristics of the exchange rate dynamics are, in fact, very similar to those of empirical data. The similarity appears to be quite insensitive with respect to some of the ingredients of the GA algorithm (i.e. utility-based versus rank-based or tournament selection, binary or real coding). However, appearance or not of realistic time series characteristics depends crucially on the mutation probability (which should be low) and the number of agents (not more than about 1000). With a larger population, this collective learning dynamics looses its realistic appearance and instead exhibits regular periodic oscillations of the agents? choice variables.

(This abstract was borrowed from another version of this item.)

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/B6VBY-4CSGG8N-1/2/4c55035f85bb7e15daf7b2cebdd55f1e
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Journal of Mathematical Economics.

Volume (Year): 41 (2005)
Issue (Month): 1-2 (February)
Pages: 169-196

as
in new window

Handle: RePEc:eee:mateco:v:41:y:2005:i:1-2:p:169-196
Contact details of provider: Web page: http://www.elsevier.com/locate/jmateco

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Brock, W.A. & Hommes, C.H., 1996. "A Rational Route to Randomness," Working papers 9530r, Wisconsin Madison - Social Systems.
  2. Gaunersdorfer, A. & Hommes, C.H., 2000. "A Nonlinear Structural Model for Volatility Clustering," CeNDEF Working Papers 00-02, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
  3. Giulia Iori, 1999. "A microsimulation of traders activity in the stock market: the role of heterogeneity, agents' interactions and trade frictions," Finance 9905005, EconWPA.
  4. Blume, Lawrence & Easley, David, 1992. "Evolution and market behavior," Journal of Economic Theory, Elsevier, vol. 58(1), pages 9-40, October.
  5. Brock,W.A. & Hommes,C.H., 2001. "Evolutionary dynamics in financial markets with many trader types," Working papers 7, Wisconsin Madison - Social Systems.
  6. Lux, T. & M. Marchesi, . "Volatility Clustering in Financial Markets: A Micro-Simulation of Interacting Agents," Discussion Paper Serie B 437, University of Bonn, Germany, revised Jul 1998.
  7. Egenter, E. & Lux, T. & Stauffer, D., 1999. "Finite-size effects in Monte Carlo simulations of two stock market models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 268(1), pages 250-256.
  8. Hens, Thorsten & Schenk-Hoppe, Klaus Reiner, 2005. "Evolutionary stability of portfolio rules in incomplete markets," Journal of Mathematical Economics, Elsevier, vol. 41(1-2), pages 43-66, February.
  9. Arifovic, Jasmina & Gencay, Ramazan, 2000. "Statistical properties of genetic learning in a model of exchange rate," Journal of Economic Dynamics and Control, Elsevier, vol. 24(5-7), pages 981-1005, June.
  10. Bilson, John F O, 1981. "The "Speculative Efficiency" Hypothesis," The Journal of Business, University of Chicago Press, vol. 54(3), pages 435-51, July.
  11. Carl Chiarella & Xue-Zhong He, 2001. "Asset Price and Wealth Dynamics Under Heterogeneous Expectations," Research Paper Series 56, Quantitative Finance Research Centre, University of Technology, Sydney.
  12. KIRMAN, Alan & TEYSSIÈRE, Gilles, 2002. "Microeconomic models for long-memory in the volatility of financial time series," CORE Discussion Papers 2002056, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  13. Chen, Shu-Heng & Lux, Thomas & Marchesi, Michele, 2001. "Testing for non-linear structure in an artificial financial market," Journal of Economic Behavior & Organization, Elsevier, vol. 46(3), pages 327-342, November.
  14. Carl Chiarella & Tony He, 2002. "An Adaptive Model on Asset Pricing and Wealth Dynamics with Heterogeneous Trading Strategies," Computing in Economics and Finance 2002 135, Society for Computational Economics.
  15. Damien Challet & Matteo Marsili, 2002. "Criticality and finite size effects in a simple realistic model of stock market," Papers cond-mat/0210549, arXiv.org, revised Dec 2002.
  16. Meese, Richard A. & Rogoff, Kenneth, 1983. "Empirical exchange rate models of the seventies : Do they fit out of sample?," Journal of International Economics, Elsevier, vol. 14(1-2), pages 3-24, February.
  17. Arifovic, Jasmina, 1996. "The Behavior of the Exchange Rate in the Genetic Algorithm and Experimental Economies," Journal of Political Economy, University of Chicago Press, vol. 104(3), pages 510-41, June.
  18. Chia-Hsuan Yeh, Shu-Heng Chen, 2001. "The Influence of Market Size in an Artificial Stock Market: The Approach Based on Genetic Programming," Computing in Economics and Finance 2001 74, Society for Computational Economics.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:mateco:v:41:y:2005:i:1-2:p:169-196. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.