IDEAS home Printed from https://ideas.repec.org/p/sce/scecf2/135.html

An Adaptive Model on Asset Pricing and Wealth Dynamics with Heterogeneous Trading Strategies

Author

Listed:
  • Carl Chiarella
  • Tony He

Abstract

This paper develops an adaptive model on asset pricing and wealth dynamic of a financial market with heterogeneous agents and examines the profitability of momentum and contrarian trading strategies. In order to characterize asset price, wealth dynamics and rational adaptiveness arising from the interaction of heterogeneous agents with CRRA utility, an adaptive discrete time equilibrium model in terms of return ad wealth proportions (among heterogeneous representative agents) is established. Taking trend followers and contrarians as the main hetergeneous agents in the model, the profitability of momentum and contrarian trading strategies is analyzed. Our results show the capability of the model to characterize some of the existing evidence on many of anomailies observed in financial markets, including the profitability of momentum trading strategies over short time intervals, rational adaptiveness of agents, overconfidence and underreaction, overreaction and herd behavior, excess volatility, and volatility clustering.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Carl Chiarella & Tony He, 2002. "An Adaptive Model on Asset Pricing and Wealth Dynamics with Heterogeneous Trading Strategies," Computing in Economics and Finance 2002 135, Society for Computational Economics.
  • Handle: RePEc:sce:scecf2:135
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xue-Zhong He & Youwei Li, 2017. "The adaptiveness in stock markets: testing the stylized facts in the DAX 30," Journal of Evolutionary Economics, Springer, vol. 27(5), pages 1071-1094, November.
    2. Anufriev, Mikhail & Bottazzi, Giulio & Pancotto, Francesca, 2006. "Equilibria, stability and asymptotic dominance in a speculative market with heterogeneous traders," Journal of Economic Dynamics and Control, Elsevier, vol. 30(9-10), pages 1787-1835.
    3. Demary, Markus, 2007. "A Heterogenous Agents Model Usable for the Analysis of Currency Transaction Taxes," Economics Working Papers 2007-27, Christian-Albrechts-University of Kiel, Department of Economics.
    4. Carl Chiarella & Roberto Dieci & Xue-Zhong He, 2008. "Heterogeneity, Market Mechanisms, and Asset Price Dynamics," Research Paper Series 231, Quantitative Finance Research Centre, University of Technology, Sydney.
    5. Chiarella, Carl & Dieci, Roberto & Gardini, Laura, 2006. "Asset price and wealth dynamics in a financial market with heterogeneous agents," Journal of Economic Dynamics and Control, Elsevier, vol. 30(9-10), pages 1755-1786.
    6. Mikhail Anufriev & Giulio Bottazzi, 2005. "Price and Wealth Dynamics in a Speculative Market with an Arbitrary Number of Generic Technical Traders," LEM Papers Series 2005/06, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    7. Orlando Gomes, 2004. "A Continuous-Time Asset Pricing Model with Boundedly Rational Heterogeneous Agents," Finance 0409055, University Library of Munich, Germany.
    8. Mikhail Anufriev, 2008. "Wealth-driven competition in a speculative financial market: examples with maximizing agents," Quantitative Finance, Taylor & Francis Journals, vol. 8(4), pages 363-380.
    9. Demary Markus, 2008. "Who Does a Currency Transaction Tax Harm More: Short-Term Speculators or Long-Term Investors?," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 228(2-3), pages 228-250, April.
    10. Ya-Chi Huang & Chueh-Yung Tsao, 2018. "Discovering Traders’ Heterogeneous Behavior in High-Frequency Financial Data," Computational Economics, Springer;Society for Computational Economics, vol. 51(4), pages 821-846, April.
    11. Lux, Thomas & Schornstein, Sascha, 2005. "Genetic learning as an explanation of stylized facts of foreign exchange markets," Journal of Mathematical Economics, Elsevier, vol. 41(1-2), pages 169-196, February.
    12. Anufriev, Mikhail & Dindo, Pietro, 2010. "Wealth-driven selection in a financial market with heterogeneous agents," Journal of Economic Behavior & Organization, Elsevier, vol. 73(3), pages 327-358, March.
    13. Jörn Dermietzel, 2008. "The Heterogeneous Agents Approach to Financial Markets – Development and Milestones," International Handbooks on Information Systems, in: Detlef Seese & Christof Weinhardt & Frank Schlottmann (ed.), Handbook on Information Technology in Finance, chapter 19, pages 443-464, Springer.
    14. Park, Beum-Jo, 2014. "Time-varying, heterogeneous risk aversion and dynamics of asset prices among boundedly rational agents," Journal of Banking & Finance, Elsevier, vol. 43(C), pages 150-159.
    15. Kukacka, Jiri & Barunik, Jozef, 2017. "Estimation of financial agent-based models with simulated maximum likelihood," Journal of Economic Dynamics and Control, Elsevier, vol. 85(C), pages 21-45.
    16. Amilon, Henrik, 2008. "Estimation of an adaptive stock market model with heterogeneous agents," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 342-362, March.
    17. Mikhail Anufriev & Giulio Bottazzi & Francesca Pancotto, 2004. "Price and Wealth Asymptotic Dynamics with CRRA Technical Trading Strategies," LEM Papers Series 2004/23, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    18. Demary, Markus, 2006. "Transaction taxes, traders' behavior and exchange rate risks," Economics Working Papers 2006-14, Christian-Albrechts-University of Kiel, Department of Economics.
    19. Gomes, Orlando, 2006. "Heterogeneous Researchers in a Two-Sector Representative Consumer Economy," Revista Brasileira de Economia - RBE, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil), vol. 60(2), November.
    20. Mikhail Anufriev & Pietro Dindo, 2006. "Equilibrium Return and Agents’ Survival in a Multiperiod Asset Market: Analytic Support of a Simulation Model," Lecture Notes in Economics and Mathematical Systems, in: Charlotte Bruun (ed.), Advances in Artificial Economics, chapter 19, pages 269-282, Springer.
    21. Kukacka, Jiri & Barunik, Jozef, 2013. "Behavioural breaks in the heterogeneous agent model: The impact of herding, overconfidence, and market sentiment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(23), pages 5920-5938.
    22. Anufriev, M. & Dindo, P.D.E., 2007. "Wealth Selection in a Financial Market with Heterogeneous Agents," CeNDEF Working Papers 07-10, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    23. Mikhail Anufriev & Giulio Bottazzi, 2006. "Behavioral Consistent Market Equilibria under Procedural Rationality," Computing in Economics and Finance 2006 225, Society for Computational Economics.
    24. Blake LeBaron, 2011. "Active and Passive Learning in Agent-based Financial Markets," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 37(1), pages 35-43.
    25. Demary, Markus, 2010. "Transaction taxes and traders with heterogeneous investment horizons in an agent-based financial market model," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 4, pages 1-44.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • C20 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sce:scecf2:135. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/sceeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.