IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Market Mood, Adaptive Beliefs and Asset Price Dynamics

Empirical evidence has suggested that, facing different trading strategies and complicated decision, the proportions of agents relying on particular strategies may stay at constant level or vary over time. This paper presents a simple "dynamic market fraction" model of two groups of traders, fundamentalists and trend followers, under a market maker scenario. Market mood and evolutionary adaption are characterized by fixed and adaptive switching fraction among two groups, respectively. Using local stability and bifurcation analysis, as well as numerical simulation, the role played by the key parameters in the market behaviour is examined. Particular attention is payed to the impact of the market fraction, determined by the fixed proportions of confident fundamentalists and trend followers, and by the proportion of adaptively rational agents, who adopt different strategies over time depending on realized profits.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.business.uts.edu.au/qfrc/research/research_papers/rp162.pdf
Download Restriction: no

Paper provided by Quantitative Finance Research Centre, University of Technology, Sydney in its series Research Paper Series with number 162.

as
in new window

Length: 23
Date of creation: 01 Aug 2005
Date of revision:
Handle: RePEc:uts:rpaper:162
Contact details of provider: Postal: PO Box 123, Broadway, NSW 2007, Australia
Phone: +61 2 9514 7777
Fax: +61 2 9514 7711
Web page: http://www.qfrc.uts.edu.au/

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Lux, Thomas, 1998. "The socio-economic dynamics of speculative markets: interacting agents, chaos, and the fat tails of return distributions," Journal of Economic Behavior & Organization, Elsevier, vol. 33(2), pages 143-165, January.
  2. Xue-Zhong He & Youwei Li, 2005. "Heterogeneity, Profitability and Autocorrelations," Research Paper Series 147, Quantitative Finance Research Centre, University of Technology, Sydney.
  3. Cars H. Hommes, 2001. "Financial Markets as Nonlinear Adaptive Evolutionary Systems," Tinbergen Institute Discussion Papers 01-014/1, Tinbergen Institute.
  4. Taylor, Mark P. & Allen, Helen, 1992. "The use of technical analysis in the foreign exchange market," Journal of International Money and Finance, Elsevier, vol. 11(3), pages 304-314, June.
  5. Gaunersdorfer, Andrea, 2000. "Endogenous fluctuations in a simple asset pricing model with heterogeneous agents," Journal of Economic Dynamics and Control, Elsevier, vol. 24(5-7), pages 799-831, June.
  6. Chen, Shu-Heng & Yeh, Chia-Hsuan, 2002. "On the emergent properties of artificial stock markets: the efficient market hypothesis and the rational expectations hypothesis," Journal of Economic Behavior & Organization, Elsevier, vol. 49(2), pages 217-239, October.
  7. Carl Chiarella & Xue-Zhong He, 1999. "Heterogeneous Beliefs, Risks and Learning in a Simple Asset Pricing Model," Research Paper Series 18, Quantitative Finance Research Centre, University of Technology, Sydney.
  8. Ulrich Horst, 2005. "Financial price fluctuations in a stock market model with many interacting agents," Economic Theory, Springer, vol. 25(4), pages 917-932, 06.
  9. Gaunersdorfer, A. & Hommes, C.H. & Wagener, F.O.O., 2000. "Bifurcation Routes to Volatility Clustering," CeNDEF Working Papers 00-04, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
  10. Gaunersdorfer, Andrea & Hommes, Cars H. & Wagener, Florian O.O., 2008. "Bifurcation routes to volatility clustering under evolutionary learning," Journal of Economic Behavior & Organization, Elsevier, vol. 67(1), pages 27-47, July.
  11. Xue-Zhong He & Youwei Li, 2005. "Long Memory, Heterogeneity and Trend Chasing," Research Paper Series 148, Quantitative Finance Research Centre, University of Technology, Sydney.
  12. Alan P. Kirman, 1992. "Whom or What Does the Representative Individual Represent?," Journal of Economic Perspectives, American Economic Association, vol. 6(2), pages 117-136, Spring.
  13. Brock, William A. & Hommes, Cars H., 1998. "Heterogeneous beliefs and routes to chaos in a simple asset pricing model," Journal of Economic Dynamics and Control, Elsevier, vol. 22(8-9), pages 1235-1274, August.
  14. Day, Richard H. & Huang, Weihong, 1990. "Bulls, bears and market sheep," Journal of Economic Behavior & Organization, Elsevier, vol. 14(3), pages 299-329, December.
  15. Carl Chiarella & Xue-Zhong He, 2000. "Heterogeneous Beliefs, Risk and Learning in a Simple Asset Pricing Model with a Market Maker," Research Paper Series 35, Quantitative Finance Research Centre, University of Technology, Sydney.
  16. Follmer, Hans & Horst, Ulrich & Kirman, Alan, 2005. "Equilibria in financial markets with heterogeneous agents: a probabilistic perspective," Journal of Mathematical Economics, Elsevier, vol. 41(1-2), pages 123-155, February.
  17. Carl Chiarella, 1992. "The Dynamics of Speculative Behaviour," Working Paper Series 13, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
  18. Chiarella, Carl & Dieci, Roberto & Gardini, Laura, 2002. "Speculative behaviour and complex asset price dynamics: a global analysis," Journal of Economic Behavior & Organization, Elsevier, vol. 49(2), pages 173-197, October.
  19. William A. Brock & Cars H. Hommes, 1997. "A Rational Route to Randomness," Econometrica, Econometric Society, vol. 65(5), pages 1059-1096, September.
  20. Xue-Zhong He, 2003. "Asset Pricing, Volatility and Market Behaviour: A Market Fraction Approach," Research Paper Series 95, Quantitative Finance Research Centre, University of Technology, Sydney.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:uts:rpaper:162. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Duncan Ford)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.