IDEAS home Printed from https://ideas.repec.org/p/uts/rpaper/95.html
   My bibliography  Save this paper

Asset Pricing, Volatility and Market Behaviour: A Market Fraction Approach

Author

Abstract

Motivated by recent development in structural agent models on asset pricing, explanation power and calibration issue of those models, this paper presents a simple market fraction model of two types of traders - fundamentalists and trend followers - under a market maker scenario. It is found that asset prices, wealth dynamics and market behaviour are characterised by the dynamics of the underlying deterministic system. The model is able to explain various market behaviour, and generate some of the stylized facts. By introducing two measures on wealth dynamics, we are able to show the limitations of profitability and rationality of different trading strategies. Six significant autocorrelation coefficients (ACs) patterns are charaterized by different types of bifurcation of the underlying deterministic system. In particular, an oscillating and decaying AC pattern with positive ACs for even lags and negative for odd lags can only be generated when the market is dominated by the fundamentalists (that is when the parameters are near the flip bifurcation boundary), and a positive decaying AC pattern with long memory can only be generated when the market is dominated by the trend followers with high decay memory (that is when the parameters are near the Hopf bifurcation boundary). The results show a promising power of stability analysis and bifurcation theory in explaining and calibrating asset price and wealth dynamics, markt behaviour, and generating various econometric properties of financial data.

Suggested Citation

  • Xue-Zhong He, 2003. "Asset Pricing, Volatility and Market Behaviour: A Market Fraction Approach," Research Paper Series 95, Quantitative Finance Research Centre, University of Technology, Sydney.
  • Handle: RePEc:uts:rpaper:95
    as

    Download full text from publisher

    File URL: http://www.qfrc.uts.edu.au/research/research_papers/rp95.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Brock, William A & LeBaron, Blake D, 1996. "A Dynamic Structural Model for Stock Return Volatility and Trading Volume," The Review of Economics and Statistics, MIT Press, vol. 78(1), pages 94-110, February.
    2. C. Chiarella & X-Z. He, 2001. "Asset price and wealth dynamics under heterogeneous expectations," Quantitative Finance, Taylor & Francis Journals, vol. 1(5), pages 509-526.
    3. C. H. Hommes, 2001. "Financial markets as nonlinear adaptive evolutionary systems," Quantitative Finance, Taylor & Francis Journals, vol. 1(1), pages 149-167.
    4. Arthur, W.B. & Holland, J.H. & LeBaron, B. & Palmer, R. & Tayler, P., 1996. "Asset Pricing Under Endogenous Expectations in an Artificial Stock Market," Working papers 9625, Wisconsin Madison - Social Systems.
    5. Stoll, Hans R, 1978. "The Supply of Dealer Services in Securities Markets," Journal of Finance, American Finance Association, vol. 33(4), pages 1133-1151, September.
    6. Iori, Giulia, 2002. "A microsimulation of traders activity in the stock market: the role of heterogeneity, agents' interactions and trade frictions," Journal of Economic Behavior & Organization, Elsevier, vol. 49(2), pages 269-285, October.
    7. Chiarella, Carl & He, Xue-Zhong, 2002. "Heterogeneous Beliefs, Risk and Learning in a Simple Asset Pricing Model," Computational Economics, Springer;Society for Computational Economics, vol. 19(1), pages 95-132, February.
    8. De Long, J Bradford & Andrei Shleifer & Lawrence H. Summers & Robert J. Waldmann, 1990. "Noise Trader Risk in Financial Markets," Journal of Political Economy, University of Chicago Press, vol. 98(4), pages 703-738, August.
    9. Chiarella, Carl & He, Xue-Zhong, 2003. "Dynamics of beliefs and learning under aL-processes -- the heterogeneous case," Journal of Economic Dynamics and Control, Elsevier, vol. 27(3), pages 503-531, January.
    10. Bullard, James & Duffy, John, 1999. "Using Genetic Algorithms to Model the Evolution of Heterogeneous Beliefs," Computational Economics, Springer;Society for Computational Economics, vol. 13(1), pages 41-60, February.
    11. Chen, Shu-Heng & Yeh, Chia-Hsuan, 2002. "On the emergent properties of artificial stock markets: the efficient market hypothesis and the rational expectations hypothesis," Journal of Economic Behavior & Organization, Elsevier, vol. 49(2), pages 217-239, October.
    12. William A. Brock & Cars H. Hommes, 1997. "A Rational Route to Randomness," Econometrica, Econometric Society, vol. 65(5), pages 1059-1096, September.
    13. Sethi, Rajiv, 1996. "Endogenous regime switching in speculative markets," Structural Change and Economic Dynamics, Elsevier, vol. 7(1), pages 99-118, March.
    14. Chiarella, Carl & Dieci, Roberto & Gardini, Laura, 2002. "Speculative behaviour and complex asset price dynamics: a global analysis," Journal of Economic Behavior & Organization, Elsevier, vol. 49(2), pages 173-197, October.
    15. M. M. Dacorogna & U. A. Muller & C. Jost & O. V. Pictet & J. R. Ward, 1995. "Heterogeneous real-time trading strategies in the foreign exchange market," The European Journal of Finance, Taylor & Francis Journals, vol. 1(4), pages 383-403.
    16. Farmer, J. Doyne & Joshi, Shareen, 2002. "The price dynamics of common trading strategies," Journal of Economic Behavior & Organization, Elsevier, vol. 49(2), pages 149-171, October.
    17. Hommes, C.H., 2001. "Modeling the stylized facts in finance through simple nonlinear adaptive systems," CeNDEF Working Papers 01-06, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    18. Pagan, Adrian, 1996. "The econometrics of financial markets," Journal of Empirical Finance, Elsevier, vol. 3(1), pages 15-102, May.
    19. Lux, Thomas, 1997. "Time variation of second moments from a noise trader/infection model," Journal of Economic Dynamics and Control, Elsevier, vol. 22(1), pages 1-38, November.
    20. Kyle, Albert S, 1985. "Continuous Auctions and Insider Trading," Econometrica, Econometric Society, vol. 53(6), pages 1315-1335, November.
    21. Taylor, Mark P. & Allen, Helen, 1992. "The use of technical analysis in the foreign exchange market," Journal of International Money and Finance, Elsevier, vol. 11(3), pages 304-314, June.
    22. Brock, William A. & Hommes, Cars H., 1998. "Heterogeneous beliefs and routes to chaos in a simple asset pricing model," Journal of Economic Dynamics and Control, Elsevier, vol. 22(8-9), pages 1235-1274, August.
    23. Day, Richard H. & Huang, Weihong, 1990. "Bulls, bears and market sheep," Journal of Economic Behavior & Organization, Elsevier, vol. 14(3), pages 299-329, December.
    24. LeBaron, Blake, 2000. "Agent-based computational finance: Suggested readings and early research," Journal of Economic Dynamics and Control, Elsevier, vol. 24(5-7), pages 679-702, June.
    25. Garman, Mark B., 1976. "Market microstructure," Journal of Financial Economics, Elsevier, vol. 3(3), pages 257-275, June.
    26. Ho, Thomas & Stoll, Hans R., 1981. "Optimal dealer pricing under transactions and return uncertainty," Journal of Financial Economics, Elsevier, vol. 9(1), pages 47-73, March.
    27. Chiarella, Carl & He, Xue-Zhong, 2003. "Heterogeneous Beliefs, Risk, And Learning In A Simple Asset-Pricing Model With A Market Maker," Macroeconomic Dynamics, Cambridge University Press, vol. 7(04), pages 503-536, September.
    28. Lux, Thomas, 1998. "The socio-economic dynamics of speculative markets: interacting agents, chaos, and the fat tails of return distributions," Journal of Economic Behavior & Organization, Elsevier, vol. 33(2), pages 143-165, January.
    29. Peck, James, 1990. "Liquidity without money: A General equilibrium model of market microstructure," Journal of Financial Intermediation, Elsevier, vol. 1(1), pages 80-103, March.
    30. Alan P. Kirman, 1992. "Whom or What Does the Representative Individual Represent?," Journal of Economic Perspectives, American Economic Association, vol. 6(2), pages 117-136, Spring.
    31. B. LeBaron, 2001. "A builder's guide to agent-based financial markets," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 254-261.
    32. Lux, Thomas, 1995. "Herd Behaviour, Bubbles and Crashes," Economic Journal, Royal Economic Society, vol. 105(431), pages 881-896, July.
    33. Carl Chiarella, 1992. "The Dynamics of Speculative Behaviour," Working Paper Series 13, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    34. Gaunersdorfer, Andrea, 2000. "Endogenous fluctuations in a simple asset pricing model with heterogeneous agents," Journal of Economic Dynamics and Control, Elsevier, vol. 24(5-7), pages 799-831, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carl Chiarella & Xue-Zhong He & Duo Wang, 2004. "Statistical Properties of a Heterogeneous Asset Price Model with Time-Varying Second Moment," Research Paper Series 142, Quantitative Finance Research Centre, University of Technology, Sydney.
    2. Roberto Dieci & Ilaria Foroni & Laura Gardini & Xue-Zhong He, 2005. "Market Mood, Adaptive Beliefs and Asset Price Dynamics," Research Paper Series 162, Quantitative Finance Research Centre, University of Technology, Sydney.
    3. Sansone, Alessandro & Garofalo, Giuseppe, 2007. "Asset price dynamics in a financial market with heterogeneous trading strategies and time delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(1), pages 247-257.
    4. Xue-Zhong He & Youwei Li, 2017. "The adaptiveness in stock markets: testing the stylized facts in the DAX 30," Journal of Evolutionary Economics, Springer, pages 1071-1094.
    5. Chiarella, Carl & Dieci, Roberto & He, Xue-Zhong, 2007. "Heterogeneous expectations and speculative behavior in a dynamic multi-asset framework," Journal of Economic Behavior & Organization, Elsevier, pages 408-427.
    6. Carl Chiarella & Roberto Dieci & Xue-Zhong He, 2008. "Heterogeneity, Market Mechanisms, and Asset Price Dynamics," Research Paper Series 231, Quantitative Finance Research Centre, University of Technology, Sydney.
    7. Carl Chiarella & Roberto Dieci & Xue-Zhong He, 2011. "The dynamic behaviour of asset prices in disequilibrium: a survey," International Journal of Behavioural Accounting and Finance, Inderscience Enterprises Ltd, vol. 2(2), pages 101-139.
    8. Xue-Zhong He & Youwei Li, 2008. "Heterogeneity, convergence, and autocorrelations," Quantitative Finance, Taylor & Francis Journals, vol. 8(1), pages 59-79.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uts:rpaper:95. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Duncan Ford). General contact details of provider: http://edirc.repec.org/data/qfutsau.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.