IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v55y2006i2p201-224.html
   My bibliography  Save this article

Best subset selection of autoregressive models with exogenous variables and generalized autoregressive conditional heteroscedasticity errors

Author

Listed:
  • Mike K. P. So
  • Cathy W. S. Chen
  • Feng‐Chi Liu

Abstract

Summary. We develop an efficient way to select the best subset autoregressive model with exogenous variables and generalized autoregressive conditional heteroscedasticity errors. One main feature of our method is to select important autoregressive and exogenous variables, and at the same time to estimate the unknown parameters. The method proposed uses the stochastic search idea. By adopting Markov chain Monte Carlo techniques, we can identify the best subset model from a large of number of possible choices. A simulation experiment shows that the method is very effective. Misspecification in the mean equation can also be detected by our model selection method. In the application to the stock‐market data of seven countries, the lagged 1 US return is found to have a strong influence on the other stock‐market returns.

Suggested Citation

  • Mike K. P. So & Cathy W. S. Chen & Feng‐Chi Liu, 2006. "Best subset selection of autoregressive models with exogenous variables and generalized autoregressive conditional heteroscedasticity errors," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 55(2), pages 201-224, April.
  • Handle: RePEc:bla:jorssc:v:55:y:2006:i:2:p:201-224
    DOI: 10.1111/j.1467-9876.2006.00535.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9876.2006.00535.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9876.2006.00535.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Søren Johansen & Marco Riani & Anthony C. Atkinson, 2012. "The Selection of ARIMA Models with or without Regressors," Discussion Papers 12-17, University of Copenhagen. Department of Economics.
    2. Alexander Vosseler & Enzo Weber, 2018. "Forecasting seasonal time series data: a Bayesian model averaging approach," Computational Statistics, Springer, vol. 33(4), pages 1733-1765, December.
    3. Yip, Iris W.H. & So, Mike K.P., 2009. "Simplified specifications of a multivariate generalized autoregressive conditional heteroscedasticity model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(2), pages 327-340.
    4. Rodolfo Angelo Magtanggol Iii De Guzman & Mike K. P. So, 2018. "Empirical Analysis Of Bitcoin Prices Using Threshold Time Series Models," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 13(04), pages 1-24, December.
    5. Ayman A. Amin & Walid Emam & Yusra Tashkandy & Christophe Chesneau, 2023. "Bayesian Subset Selection of Seasonal Autoregressive Models," Mathematics, MDPI, vol. 11(13), pages 1-13, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:55:y:2006:i:2:p:201-224. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.