IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v55y2006i2p201-224.html
   My bibliography  Save this article

Best subset selection of autoregressive models with exogenous variables and generalized autoregressive conditional heteroscedasticity errors

Author

Listed:
  • Mike K. P. So
  • Cathy W. S. Chen
  • Feng-Chi Liu

Abstract

We develop an efficient way to select the best subset autoregressive model with exogenous variables and generalized autoregressive conditional heteroscedasticity errors. One main feature of our method is to select important autoregressive and exogenous variables, and at the same time to estimate the unknown parameters. The method proposed uses the stochastic search idea. By adopting Markov chain Monte Carlo techniques, we can identify the best subset model from a large of number of possible choices. A simulation experiment shows that the method is very effective. Misspecification in the mean equation can also be detected by our model selection method. In the application to the stock-market data of seven countries, the lagged 1 US return is found to have a strong influence on the other stock-market returns. Copyright 2006 Royal Statistical Society.

Suggested Citation

  • Mike K. P. So & Cathy W. S. Chen & Feng-Chi Liu, 2006. "Best subset selection of autoregressive models with exogenous variables and generalized autoregressive conditional heteroscedasticity errors," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 55(2), pages 201-224.
  • Handle: RePEc:bla:jorssc:v:55:y:2006:i:2:p:201-224
    as

    Download full text from publisher

    File URL: http://www.blackwell-synergy.com/doi/abs/10.1111/j.1467-9876.2006.00535.x
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Søren Johansen & Marco Riani & Anthony C. Atkinson, 2012. "The Selection of ARIMA Models with or without Regressors," Discussion Papers 12-17, University of Copenhagen. Department of Economics.
    2. Yip, Iris W.H. & So, Mike K.P., 2009. "Simplified specifications of a multivariate generalized autoregressive conditional heteroscedasticity model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(2), pages 327-340.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:55:y:2006:i:2:p:201-224. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: http://edirc.repec.org/data/rssssea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.