IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v21y2017icp1-9.html
   My bibliography  Save this article

Nonparametric tolerance limits for pair trading

Author

Listed:
  • Chen, Cathy W.S.
  • Lin, Tsai-Yu

Abstract

Tolerance interval is an important statistical tool for determining the threshold of a certain reference. We propose to utilize nonparametric one-sided tolerance limits with three look-back window sizes for return spreads in order to find trading entry and exit signals. We illustrate how the proposed method help uncover arbitrage opportunities via the daily return spreads of 12 stock pairs in the U.S. markets and then report the performance of pair trading for two out-of-sample periods. The empirical results suggest that combining the minimum squared distance method and nonparametric one-sided tolerance limits generates positive excess returns, relative to the underlying stocks.

Suggested Citation

  • Chen, Cathy W.S. & Lin, Tsai-Yu, 2017. "Nonparametric tolerance limits for pair trading," Finance Research Letters, Elsevier, vol. 21(C), pages 1-9.
  • Handle: RePEc:eee:finlet:v:21:y:2017:i:c:p:1-9
    DOI: 10.1016/j.frl.2016.11.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612316302872
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2016.11.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Evan Gatev & William N. Goetzmann & K. Geert Rouwenhorst, 2006. "Pairs Trading: Performance of a Relative-Value Arbitrage Rule," The Review of Financial Studies, Society for Financial Studies, vol. 19(3), pages 797-827.
    2. Robert Elliott & John Van Der Hoek & William Malcolm, 2005. "Pairs trading," Quantitative Finance, Taylor & Francis Journals, vol. 5(3), pages 271-276.
    3. Peter Laurence & Tai-Ho Wang, 2008. "Distribution-free upper bounds for spread options and market-implied antimonotonicity gap," The European Journal of Finance, Taylor & Francis Journals, vol. 14(8), pages 717-734.
    4. Young, Derek S., 2010. "tolerance: An R Package for Estimating Tolerance Intervals," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 36(i05).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Law, K.F. & Li, W.K. & Yu, Philip L.H., 2018. "A single-stage approach for cointegration-based pairs trading," Finance Research Letters, Elsevier, vol. 26(C), pages 177-184.
    2. Lin, Tsai-Yu & Chen, Cathy W.S. & Syu, Fong-Yi, 2021. "Multi-asset pair-trading strategy: A statistical learning approach," The North American Journal of Economics and Finance, Elsevier, vol. 55(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmet Göncü & Erdinc Akyildirim, 2017. "Statistical Arbitrage In The Multi-Asset Black–Scholes Economy," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 12(01), pages 1-18, March.
    2. Huck, Nicolas, 2009. "Pairs selection and outranking: An application to the S&P 100 index," European Journal of Operational Research, Elsevier, vol. 196(2), pages 819-825, July.
    3. Krauss, Christopher, 2015. "Statistical arbitrage pairs trading strategies: Review and outlook," FAU Discussion Papers in Economics 09/2015, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    4. Clegg, Matthew & Krauss, Christopher, 2016. "Pairs trading with partial cointegration," FAU Discussion Papers in Economics 05/2016, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    5. Tim Leung & Xin Li, 2015. "Optimal Mean Reversion Trading With Transaction Costs And Stop-Loss Exit," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(03), pages 1-31.
    6. Zouheir Mighri & Faysal Mansouri, 2016. "Asymmetric price transmission within the Argentinean stock market: an asymmetric threshold cointegration approach," Empirical Economics, Springer, vol. 51(3), pages 1115-1149, November.
    7. Yerkin Kitapbayev & Tim Leung, 2018. "Mean Reversion Trading With Sequential Deadlines And Transaction Costs," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(01), pages 1-22, February.
    8. Wang, Xi & Bao, Si & Chen, Jingchao, 2017. "High-frequency stock linkage and multi-dimensional stationary processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 70-83.
    9. Yang, Jen-Wei & Tsai, Shu-Yu & Shyu, So-De & Chang, Chia-Chien, 2016. "Pairs trading: The performance of a stochastic spread model with regime switching-evidence from the S&P 500," International Review of Economics & Finance, Elsevier, vol. 43(C), pages 139-150.
    10. Ramos-Requena, J.P. & Trinidad-Segovia, J.E. & Sánchez-Granero, M.A., 2017. "Introducing Hurst exponent in pair trading," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 488(C), pages 39-45.
    11. Kim, Min Jae & Kim, Sehyun & Jo, Yong Hwan & Kim, Soo Yong, 2011. "Dependence structure of the commodity and stock markets, and relevant multi-spread strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 3842-3854.
    12. Focardi, Sergio M. & Fabozzi, Frank J. & Mitov, Ivan K., 2016. "A new approach to statistical arbitrage: Strategies based on dynamic factor models of prices and their performance," Journal of Banking & Finance, Elsevier, vol. 65(C), pages 134-155.
    13. João Frois Caldeira & Gulherme Valle Moura, 2013. "Selection of a Portfolio of Pairs Based on Cointegration: A Statistical Arbitrage Strategy," Brazilian Review of Finance, Brazilian Society of Finance, vol. 11(1), pages 49-80.
    14. Suhan Altay & Katia Colaneri & Zehra Eksi, 2017. "Pairs Trading under Drift Uncertainty and Risk Penalization," Papers 1704.06697, arXiv.org, revised Sep 2018.
    15. Lin, Tsai-Yu & Chen, Cathy W.S. & Syu, Fong-Yi, 2021. "Multi-asset pair-trading strategy: A statistical learning approach," The North American Journal of Economics and Finance, Elsevier, vol. 55(C).
    16. Endres, Sylvia & Stübinger, Johannes, 2017. "Optimal trading strategies for Lévy-driven Ornstein-Uhlenbeck processes," FAU Discussion Papers in Economics 17/2017, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    17. Huck, Nicolas, 2010. "Pairs trading and outranking: The multi-step-ahead forecasting case," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1702-1716, December.
    18. Chen, Cathy W.S. & Wang, Zona & Sriboonchitta, Songsak & Lee, Sangyeol, 2017. "Pair trading based on quantile forecasting of smooth transition GARCH models," The North American Journal of Economics and Finance, Elsevier, vol. 39(C), pages 38-55.
    19. Laila Taskeen Qazi & Atta Ur Rahman & Saleem Gul, 2015. "Which Pairs of Stocks should we Trade? Selection of Pairs for Statistical Arbitrage and Pairs Trading in Karachi Stock Exchange," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 54(3), pages 215-244.
    20. Stübinger, Johannes & Endres, Sylvia, 2017. "Pairs trading with a mean-reverting jump-diffusion model on high-frequency data," FAU Discussion Papers in Economics 10/2017, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.

    More about this item

    Keywords

    Pair trading; Nonparametric one-sided tolerance limits; Minimum squared distance method; Out-of-sample forecasting; Spreads;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:21:y:2017:i:c:p:1-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.